Haoming Yu, Yongyan Zhang, Zhicong Liao, Benjamin William Walters, Bluma J Lesch
{"title":"H3K4me3 amplifies transcription at intergenic active regulatory elements.","authors":"Haoming Yu, Yongyan Zhang, Zhicong Liao, Benjamin William Walters, Bluma J Lesch","doi":"10.1101/gad.352841.125","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian genomes undergo pervasive transcription in both genic and intergenic regions. Trimethylation of histone H3 lysine 4 (H3K4me3) is a deeply conserved and functionally important histone modification enriched at transcriptionally active promoters, where it facilitates RNA polymerase activity. H3K4me3 is also commonly found in intergenic regions, where its role is poorly understood. We interrogated the role of H3K4me3 at intergenic regulatory elements by using epigenetic editing to efficiently deposit H3K4me3 at intergenic loci. We found that H3K4me3 amplifies RNA polymerase activity and is actively remodeled at intergenic regions, shedding light on these important but poorly understood regions of the genome.</p>","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.352841.125","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mammalian genomes undergo pervasive transcription in both genic and intergenic regions. Trimethylation of histone H3 lysine 4 (H3K4me3) is a deeply conserved and functionally important histone modification enriched at transcriptionally active promoters, where it facilitates RNA polymerase activity. H3K4me3 is also commonly found in intergenic regions, where its role is poorly understood. We interrogated the role of H3K4me3 at intergenic regulatory elements by using epigenetic editing to efficiently deposit H3K4me3 at intergenic loci. We found that H3K4me3 amplifies RNA polymerase activity and is actively remodeled at intergenic regions, shedding light on these important but poorly understood regions of the genome.
期刊介绍:
Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers.
Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).