Farid Nakhle, Antoine H Harfouche, Hani Karam, Vasileios Tserolas
{"title":"Exploring subthreshold processing for next-generation TinyAI.","authors":"Farid Nakhle, Antoine H Harfouche, Hani Karam, Vasileios Tserolas","doi":"10.3389/fncom.2025.1638782","DOIUrl":null,"url":null,"abstract":"<p><p>The energy demands of modern AI systems have reached unprecedented levels, driven by the rapid scaling of deep learning models, including large language models, and the inefficiencies of current computational architectures. In contrast, biological neural systems operate with remarkable energy efficiency, achieving complex computations while consuming orders of magnitude less power. A key mechanism enabling this efficiency is subthreshold processing, where neurons perform computations through graded, continuous signals below the spiking threshold, reducing energy costs. Despite its significance in biological systems, subthreshold processing remains largely overlooked in AI design. This perspective explores how principles of subthreshold dynamics can inspire the design of novel AI architectures and computational methods as a step toward advancing TinyAI. We propose pathways such as algorithmic analogs of subthreshold integration, including graded activation functions, dendritic-inspired hierarchical processing, and hybrid analog-digital systems to emulate the energy-efficient operations of biological neurons. We further explore neuromorphic and compute-in-memory hardware platforms that could support these operations, and propose a design stack aligned with the efficiency and adaptability of the brain. By integrating subthreshold dynamics into AI architecture, this work provides a roadmap toward sustainable, responsive, and accessible intelligence for resource-constrained environments.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1638782"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12351320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1638782","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The energy demands of modern AI systems have reached unprecedented levels, driven by the rapid scaling of deep learning models, including large language models, and the inefficiencies of current computational architectures. In contrast, biological neural systems operate with remarkable energy efficiency, achieving complex computations while consuming orders of magnitude less power. A key mechanism enabling this efficiency is subthreshold processing, where neurons perform computations through graded, continuous signals below the spiking threshold, reducing energy costs. Despite its significance in biological systems, subthreshold processing remains largely overlooked in AI design. This perspective explores how principles of subthreshold dynamics can inspire the design of novel AI architectures and computational methods as a step toward advancing TinyAI. We propose pathways such as algorithmic analogs of subthreshold integration, including graded activation functions, dendritic-inspired hierarchical processing, and hybrid analog-digital systems to emulate the energy-efficient operations of biological neurons. We further explore neuromorphic and compute-in-memory hardware platforms that could support these operations, and propose a design stack aligned with the efficiency and adaptability of the brain. By integrating subthreshold dynamics into AI architecture, this work provides a roadmap toward sustainable, responsive, and accessible intelligence for resource-constrained environments.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro