{"title":"Preparation duration shapes the goal-directed tuning of stretch reflex responses.","authors":"Robin Rohlén, Frida Torell, Michael Dimitriou","doi":"10.1007/s00221-025-07139-z","DOIUrl":null,"url":null,"abstract":"<p><p>Stretch reflex responses counteract sudden perturbations, and modulation of reflex gains can facilitate voluntary movement. Recent studies suggest movement preparation includes goal-directed tuning of muscle spindles and an equivalent modulation of both short- and long-latency stretch reflex responses (SLR and LLR), as long as the preparatory delay between 'Cue' and 'Go' exceeds 250 ms. The current study aimed to clarify the minimal preparation time required for goal-directed modulation of SLR and LLR responses and to determine how such modulation progressively evolves with extended preparation. We recorded bipolar electromyographic signals of healthy participants to assess reflex responses to mechanical perturbations induced by a robotic manipulandum in the context of a delayed-reach task. Specifically, we examined how multiple preparatory delays (250, 300, 350, 400, 450, and 500 ms) impact the goal-directed modulation of SLR and LLR responses from the loaded or unloaded pectoralis major, anterior deltoid, and posterior deltoid muscles. We found that preparatory delays of 300 ms and 350 ms are sufficient for goal-directed tuning of SLR responses in the posterior deltoid and pectoralis muscles, respectively. Our results also suggest that unloading (i.e., antagonist loading) may facilitate both the earlier emergence and more robust expression of goal-directed SLR tuning. Goal-directed tuning of LLR responses emerged as early as 250 ms of preparation, and such tuning was robust against muscle load conditions, in line with previous findings. We observed no consistent increase in SLR tuning at preparation delays that extended beyond the required minimum, whereas such enhancement was observed at the LLR epoch. These findings clarify the temporal characteristics of goal-directed stretch reflex gains, which likely emerge through the interplay of multiple feedback mechanisms.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":"243 9","pages":"198"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360986/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-025-07139-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stretch reflex responses counteract sudden perturbations, and modulation of reflex gains can facilitate voluntary movement. Recent studies suggest movement preparation includes goal-directed tuning of muscle spindles and an equivalent modulation of both short- and long-latency stretch reflex responses (SLR and LLR), as long as the preparatory delay between 'Cue' and 'Go' exceeds 250 ms. The current study aimed to clarify the minimal preparation time required for goal-directed modulation of SLR and LLR responses and to determine how such modulation progressively evolves with extended preparation. We recorded bipolar electromyographic signals of healthy participants to assess reflex responses to mechanical perturbations induced by a robotic manipulandum in the context of a delayed-reach task. Specifically, we examined how multiple preparatory delays (250, 300, 350, 400, 450, and 500 ms) impact the goal-directed modulation of SLR and LLR responses from the loaded or unloaded pectoralis major, anterior deltoid, and posterior deltoid muscles. We found that preparatory delays of 300 ms and 350 ms are sufficient for goal-directed tuning of SLR responses in the posterior deltoid and pectoralis muscles, respectively. Our results also suggest that unloading (i.e., antagonist loading) may facilitate both the earlier emergence and more robust expression of goal-directed SLR tuning. Goal-directed tuning of LLR responses emerged as early as 250 ms of preparation, and such tuning was robust against muscle load conditions, in line with previous findings. We observed no consistent increase in SLR tuning at preparation delays that extended beyond the required minimum, whereas such enhancement was observed at the LLR epoch. These findings clarify the temporal characteristics of goal-directed stretch reflex gains, which likely emerge through the interplay of multiple feedback mechanisms.
期刊介绍:
Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.