The ILIA study: protocol for a randomized-controlled multicenter clinical trial on smartphone- and web-based relapse monitoring for patients with schizophrenia or schizoaffective disorder.

IF 3.7 3区 医学 Q1 CLINICAL NEUROLOGY
Selina Hiller, Laura Emde, Denise Jais, Soňa Nevická Sikorová, Eduard Bakstein, Filip Španiel, Kateřina Urbanová, Eric Hahn, Marco Zierhut, Daniel Fürstenau, Markus Bühner, Lukas Junker, Isabel Maurus, Oliver Pogarell, Peter Falkai, Wolfgang Strube, Ingrid Bauer, Tobias Skuban-Eiseler, Josef Priller, Peter Brieger, Stephan Heres, Alkomiet Hasan, Kerem Böge, Stefan Leucht
{"title":"The ILIA study: protocol for a randomized-controlled multicenter clinical trial on smartphone- and web-based relapse monitoring for patients with schizophrenia or schizoaffective disorder.","authors":"Selina Hiller, Laura Emde, Denise Jais, Soňa Nevická Sikorová, Eduard Bakstein, Filip Španiel, Kateřina Urbanová, Eric Hahn, Marco Zierhut, Daniel Fürstenau, Markus Bühner, Lukas Junker, Isabel Maurus, Oliver Pogarell, Peter Falkai, Wolfgang Strube, Ingrid Bauer, Tobias Skuban-Eiseler, Josef Priller, Peter Brieger, Stephan Heres, Alkomiet Hasan, Kerem Böge, Stefan Leucht","doi":"10.1007/s00406-025-02089-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the proven efficacy of antipsychotics in relapse prevention in schizophrenia and schizoaffective disorder, every third patient experiences a relapse within less than one year. Relapses can worsen psychosocial and treatment related outcomes and lead to substantial economic costs, primarily due to frequent and prolonged hospitalizations. The aim of this project is to evaluate a smartphone- and web-based digital solution for detecting early warning signs of schizophrenia and schizoaffective disorder to reduce relapses and subsequent hospitalizations.</p><p><strong>Methods: </strong>This randomized controlled trial compares the add-on use of a smartphone-based app for monitoring relapse warning signs in patients with schizophrenia and schizoaffective disorders (ICD-10 F20/F25) used within the routine psychiatric outpatient treatment against treatment as usual (TAU) without any further study-related intervention. Patients in the intervention group use the app for one year, fill in the weekly ten-item Early Warning Signs Questionnaire (EWSQ-10P) and obtain in-app feedback. Clinicians can access the symptom trajectory via a browser-accessible dashboard. If a threshold is exceeded in the inbuilt automatic algorithm, an alert is sent to both, the clinician and patient, enabling timely contact and, as part of a shared decision-making process, an optional adjustment of treatment decision. A total of 110 outpatients are recruited across eight study sites.</p><p><strong>Discussion: </strong>Continuous monitoring of early warning signs is expected to lead to behavioral changes and to decrease the necessity and duration of psychiatric hospital stays, thereby lowering healthcare costs. Additionally, the intervention could reduce symptom severity, alleviate medication adherence, shared decision-making, patient activation or quality of life. Qualitative data is collected to better understand patient needs and preferences regarding app usage and relapses. Insights gained from this study can be integrated into routine psychiatric care, improving the long-term treatment of patients with schizophrenia or schizoaffective disorder.</p><p><strong>Trial registration: </strong>German Clinical Trials Register (ID: DRKS00034991; registration date: 30.08.2024).</p>","PeriodicalId":11822,"journal":{"name":"European Archives of Psychiatry and Clinical Neuroscience","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Archives of Psychiatry and Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00406-025-02089-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Despite the proven efficacy of antipsychotics in relapse prevention in schizophrenia and schizoaffective disorder, every third patient experiences a relapse within less than one year. Relapses can worsen psychosocial and treatment related outcomes and lead to substantial economic costs, primarily due to frequent and prolonged hospitalizations. The aim of this project is to evaluate a smartphone- and web-based digital solution for detecting early warning signs of schizophrenia and schizoaffective disorder to reduce relapses and subsequent hospitalizations.

Methods: This randomized controlled trial compares the add-on use of a smartphone-based app for monitoring relapse warning signs in patients with schizophrenia and schizoaffective disorders (ICD-10 F20/F25) used within the routine psychiatric outpatient treatment against treatment as usual (TAU) without any further study-related intervention. Patients in the intervention group use the app for one year, fill in the weekly ten-item Early Warning Signs Questionnaire (EWSQ-10P) and obtain in-app feedback. Clinicians can access the symptom trajectory via a browser-accessible dashboard. If a threshold is exceeded in the inbuilt automatic algorithm, an alert is sent to both, the clinician and patient, enabling timely contact and, as part of a shared decision-making process, an optional adjustment of treatment decision. A total of 110 outpatients are recruited across eight study sites.

Discussion: Continuous monitoring of early warning signs is expected to lead to behavioral changes and to decrease the necessity and duration of psychiatric hospital stays, thereby lowering healthcare costs. Additionally, the intervention could reduce symptom severity, alleviate medication adherence, shared decision-making, patient activation or quality of life. Qualitative data is collected to better understand patient needs and preferences regarding app usage and relapses. Insights gained from this study can be integrated into routine psychiatric care, improving the long-term treatment of patients with schizophrenia or schizoaffective disorder.

Trial registration: German Clinical Trials Register (ID: DRKS00034991; registration date: 30.08.2024).

ILIA研究:智能手机和网络复发监测精神分裂症或分裂情感性障碍患者的随机对照多中心临床试验方案。
背景:尽管抗精神病药物在预防精神分裂症和分裂情感性障碍复发方面已被证实有效,但三分之一的患者在不到一年的时间内复发。复发可使心理社会和治疗相关结果恶化,并导致巨大的经济成本,主要是由于频繁和长期住院。该项目的目的是评估一种智能手机和基于网络的数字解决方案,用于检测精神分裂症和分裂情感性障碍的早期预警信号,以减少复发和随后的住院治疗。方法:本随机对照试验比较了在常规精神科门诊治疗中使用基于智能手机的应用程序监测精神分裂症和分裂情感障碍患者复发警告信号(ICD-10 F20/F25)与常规治疗(TAU)的附加使用,而无需任何进一步的研究相关干预。干预组患者使用app一年,填写每周十项早期预警信号问卷(EWSQ-10P),获取app内反馈。临床医生可以通过浏览器访问的仪表板访问症状轨迹。如果超过内置自动算法中的阈值,则会向临床医生和患者发送警报,从而实现及时联系,并作为共享决策过程的一部分,可选择调整治疗决策。总共在8个研究地点招募了110名门诊患者。讨论:持续监测早期预警信号有望导致行为改变,减少精神病院住院的必要性和持续时间,从而降低医疗保健费用。此外,干预可以降低症状严重程度,减轻药物依从性,共同决策,患者激活或生活质量。收集定性数据以更好地了解患者对应用程序使用和复发的需求和偏好。从这项研究中获得的见解可以整合到常规精神病学护理中,改善精神分裂症或分裂情感性障碍患者的长期治疗。试验注册:德国临床试验注册(ID: DRKS00034991;注册日期:30.08.2024)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
4.30%
发文量
154
审稿时长
6-12 weeks
期刊介绍: The original papers published in the European Archives of Psychiatry and Clinical Neuroscience deal with all aspects of psychiatry and related clinical neuroscience. Clinical psychiatry, psychopathology, epidemiology as well as brain imaging, neuropathological, neurophysiological, neurochemical and moleculargenetic studies of psychiatric disorders are among the topics covered. Thus both the clinician and the neuroscientist are provided with a handy source of information on important scientific developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信