A Comparison of LTA Models with and Without Residual Correlation in Estimating Transition Probabilities.

IF 2.3 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Na Yeon Lee, Sojin Yoon, Sehee Hong
{"title":"A Comparison of LTA Models with and Without Residual Correlation in Estimating Transition Probabilities.","authors":"Na Yeon Lee, Sojin Yoon, Sehee Hong","doi":"10.1177/00131644251358530","DOIUrl":null,"url":null,"abstract":"<p><p>In longitudinal mixture models like latent transition analysis (LTA), identical items are often repeatedly measured across multiple time points to define latent classes and individuals' similar response patterns across multiple time points, which attributes to residual correlations. Therefore, this study hypothesized that an LTA model assuming residual correlations among indicator variables measured repeatedly across multiple time points would provide more accurate estimates of transition probabilities than a traditional LTA model. To test this hypothesis, a Monte Carlo simulation was conducted to generate data both with and without specified residual correlations among the repeatedly measured indicator variables, and the two LTA models-one that accounted for residual correlations and one that did not-were compared. This study included transition probabilities, numbers of indicator variables, sample sizes, and levels of residual correlations as the simulation conditions. The estimation performances were compared based on parameter estimate bias, mean squared error, and coverage. The results demonstrate that LTA with residual correlations outperforms traditional LTA in estimating transition probabilities, and the differences between the two models become prominent when the residual correlation is .3 or higher. This research integrates the characteristics of longitudinal data in an LTA simulation study and suggests an improved version of LTA estimation.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644251358530"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644251358530","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In longitudinal mixture models like latent transition analysis (LTA), identical items are often repeatedly measured across multiple time points to define latent classes and individuals' similar response patterns across multiple time points, which attributes to residual correlations. Therefore, this study hypothesized that an LTA model assuming residual correlations among indicator variables measured repeatedly across multiple time points would provide more accurate estimates of transition probabilities than a traditional LTA model. To test this hypothesis, a Monte Carlo simulation was conducted to generate data both with and without specified residual correlations among the repeatedly measured indicator variables, and the two LTA models-one that accounted for residual correlations and one that did not-were compared. This study included transition probabilities, numbers of indicator variables, sample sizes, and levels of residual correlations as the simulation conditions. The estimation performances were compared based on parameter estimate bias, mean squared error, and coverage. The results demonstrate that LTA with residual correlations outperforms traditional LTA in estimating transition probabilities, and the differences between the two models become prominent when the residual correlation is .3 or higher. This research integrates the characteristics of longitudinal data in an LTA simulation study and suggests an improved version of LTA estimation.

有残差相关和无残差相关的LTA模型估计转移概率的比较。
在潜在转移分析(LTA)等纵向混合模型中,经常在多个时间点上重复测量相同的项目,以确定潜在类别和个体在多个时间点上的相似反应模式,这归因于残差相关性。因此,本研究假设假设在多个时间点重复测量的指标变量之间存在残差相关性的LTA模型将比传统的LTA模型提供更准确的转移概率估计。为了验证这一假设,进行了蒙特卡罗模拟,以生成重复测量的指标变量之间有或没有指定残差相关性的数据,并比较了两个LTA模型-一个考虑残差相关性,一个没有。本研究包括过渡概率、指标变量数量、样本量和残差相关水平作为模拟条件。基于参数估计偏差、均方误差和覆盖率对估计性能进行了比较。结果表明,带残差相关的LTA模型在估计转移概率方面优于传统的LTA模型,当残差相关为时,两种模型之间的差异更加突出。3或更高。本研究将纵向数据的特征整合到LTA模拟研究中,并提出了一种改进的LTA估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信