{"title":"Mitochondria as a Therapeutic Target in Neurodegeneration: Strategies for Restoring Cellular Homeostasis.","authors":"Bartosz Twarowski, Iwona Piątkowska-Chmiel, Mariola Herbet","doi":"10.2174/011570159X389970250727031306","DOIUrl":null,"url":null,"abstract":"<p><p>Ageing is a complex biological process marked by a gradual decline in bodily functions at the cellular, tissue, and organ levels, resulting from molecular damage and environmental influences. It increases disease risk, particularly in older adults with neurodegenerative conditions characterized by progressive neuronal loss and neurological symptoms such as cognitive and motor impairments. Key mechanisms include abnormal protein accumulation, oxidative stress, neuroinflammation, and mitochondrial dysfunction. Disruption of cellular homeostasis prevents the maintenance of internal conditions such as pH and glucose levels. Mitochondria, known as the cell's \"powerhouses,\" are essential for ATP production, DNA protection, and metabolic regulation, supporting cellular structures. Their dysfunction plays a crucial role in the progression of neurodegenerative diseases. Factors like chronic inflammation, ATP deficiency, excessive production of reactive oxygen species (ROS), and calcium imbalance leads to oxidative stress and neuronal damage, exacerbating neurodegeneration. Current therapies mainly focus on symptom relief, emphasizing the urgent need for new treatment strategies. Given the key role of mitochondrial dysfunction, therapies aiming to restore mitochondrial homeostasis are gaining increasing attention. Mitochondrial antioxidants such as MitoQ, MitoTEMPO, and SkQ1 have shown neuroprotective, anti-inflammatory, and antioxidant properties. Research into their therapeutic potential may lead to the development of effective drugs that restore mitochondrial function and improve quality of life of the patienst.</p>","PeriodicalId":10905,"journal":{"name":"Current Neuropharmacology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570159X389970250727031306","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ageing is a complex biological process marked by a gradual decline in bodily functions at the cellular, tissue, and organ levels, resulting from molecular damage and environmental influences. It increases disease risk, particularly in older adults with neurodegenerative conditions characterized by progressive neuronal loss and neurological symptoms such as cognitive and motor impairments. Key mechanisms include abnormal protein accumulation, oxidative stress, neuroinflammation, and mitochondrial dysfunction. Disruption of cellular homeostasis prevents the maintenance of internal conditions such as pH and glucose levels. Mitochondria, known as the cell's "powerhouses," are essential for ATP production, DNA protection, and metabolic regulation, supporting cellular structures. Their dysfunction plays a crucial role in the progression of neurodegenerative diseases. Factors like chronic inflammation, ATP deficiency, excessive production of reactive oxygen species (ROS), and calcium imbalance leads to oxidative stress and neuronal damage, exacerbating neurodegeneration. Current therapies mainly focus on symptom relief, emphasizing the urgent need for new treatment strategies. Given the key role of mitochondrial dysfunction, therapies aiming to restore mitochondrial homeostasis are gaining increasing attention. Mitochondrial antioxidants such as MitoQ, MitoTEMPO, and SkQ1 have shown neuroprotective, anti-inflammatory, and antioxidant properties. Research into their therapeutic potential may lead to the development of effective drugs that restore mitochondrial function and improve quality of life of the patienst.
期刊介绍:
Current Neuropharmacology aims to provide current, comprehensive/mini reviews and guest edited issues of all areas of neuropharmacology and related matters of neuroscience. The reviews cover the fields of molecular, cellular, and systems/behavioural aspects of neuropharmacology and neuroscience.
The journal serves as a comprehensive, multidisciplinary expert forum for neuropharmacologists and neuroscientists.