{"title":"Network dismantling by physical damage.","authors":"Luka Blagojević, Ivan Bonamassa, Márton Pósfai","doi":"10.1038/s42005-025-02228-5","DOIUrl":null,"url":null,"abstract":"<p><p>It is well-understood that the network structure of complex systems affects their robustness; the role played by the shape of spatially embedded networks, however, is less explored. Here, we study the robustness of networks where links are physical objects or physically transfer some quantity, hence the links can be disrupted at any point along their trajectory. To model physical damage, we tile each network with boxes and we sequentially damage these boxes, removing any link from the network that intersects a damaged tile. Using model and empirical networks, we systematically explore how the layout and the structure of networks jointly affect the resulting percolation transition. For example, we analytically and numerically show that randomly damaging a vanishing fraction of tiles is enough to destroy large-scale connectivity in randomly embedded networks. This demonstrates that the presence of long-range links makes networks extremely vulnerable to physical damage. Our work contributes to the emergent theory of physical networks.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"333"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02228-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-understood that the network structure of complex systems affects their robustness; the role played by the shape of spatially embedded networks, however, is less explored. Here, we study the robustness of networks where links are physical objects or physically transfer some quantity, hence the links can be disrupted at any point along their trajectory. To model physical damage, we tile each network with boxes and we sequentially damage these boxes, removing any link from the network that intersects a damaged tile. Using model and empirical networks, we systematically explore how the layout and the structure of networks jointly affect the resulting percolation transition. For example, we analytically and numerically show that randomly damaging a vanishing fraction of tiles is enough to destroy large-scale connectivity in randomly embedded networks. This demonstrates that the presence of long-range links makes networks extremely vulnerable to physical damage. Our work contributes to the emergent theory of physical networks.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.