{"title":"SERS nose arrays based on a signal differentiation approach for TNT gas detection.","authors":"Peitao Dong, Haiyang Yang, Tianran Wang, Siyue Xiong, Li Kuang, Weihong Qi, Xiaohua Chen, Lixia Yang, Qiuyun Fan, Dingbang Xiao, Xuezhong Wu","doi":"10.1038/s42004-025-01656-2","DOIUrl":null,"url":null,"abstract":"<p><p>TNT, a well-known explosive, is highly toxic and difficult to decompose, making the detection of trace amounts of residual TNT in the environment a topic of significant research importance. Label-free surface-enhanced Raman spectroscopy (SERS) has been demonstrated to be capable of capturing rich compositional information from the sample being tested. Here we show a SERS nose array that contains six individual SERS substrates composed of different components based on a signal differentiation approach (SD-SERS arrays). In this strategy, the SD-SERS arrays integrate differentiated signal structures, physically enhanced structures, and structures with varied adsorption capabilities. Through the differentiated information obtained from SD-SERS arrays, further integration with machine learning algorithms demonstrates the high accuracy of SD-SERS arrays in classifying TNT and structurally similar 2,4-DNPA, as well as in distinguishing between gases at different concentrations. The SERS nose based on SD-SERS arrays presents a convenient and broadly applicable technology with great potential for substance classification and concentration categorization.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"250"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01656-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
TNT, a well-known explosive, is highly toxic and difficult to decompose, making the detection of trace amounts of residual TNT in the environment a topic of significant research importance. Label-free surface-enhanced Raman spectroscopy (SERS) has been demonstrated to be capable of capturing rich compositional information from the sample being tested. Here we show a SERS nose array that contains six individual SERS substrates composed of different components based on a signal differentiation approach (SD-SERS arrays). In this strategy, the SD-SERS arrays integrate differentiated signal structures, physically enhanced structures, and structures with varied adsorption capabilities. Through the differentiated information obtained from SD-SERS arrays, further integration with machine learning algorithms demonstrates the high accuracy of SD-SERS arrays in classifying TNT and structurally similar 2,4-DNPA, as well as in distinguishing between gases at different concentrations. The SERS nose based on SD-SERS arrays presents a convenient and broadly applicable technology with great potential for substance classification and concentration categorization.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.