{"title":"CAFs exosomal miR-21-5p suppresses ferroptosis and promotes proliferation and migration in osteosarcoma.","authors":"Xiaoying Niu, Wen Tian, Yuanmeng Ke, Yifan Li, Xinxin Zhang","doi":"10.1186/s12935-025-03930-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osteosarcoma is one of the malignant tumors in children and adolescents patients. Uncontrolled and unlimited proliferation and metastasis lead to poor overall survival. CAFs play a pivotal role in the osteosarcoma tumor microenvironment, exerting significant influence on prognosis and treatment outcomes. However, there remains a need for further exploration into the intricate molecular mechanisms underlying CAFs.</p><p><strong>Methods: </strong>Single-cell RNA sequencing was employed to characterize the microenvironment of osteosarcoma. Tissue exosomal miRNA sequencing was conducted on tumor tissues and adjacent normal tissues to screen for abnormal expression of exosomal miRNAs. WGCNA analysis was used to identify target exosomal miRNAs. The relative expression of miR-21-5p was analyzed using qRT-PCR. The proliferation rate and migration ability of tumor cells were assessed using the CCK8 and Transwell method, respectively. Exosomes derived from cells were extracted and characterized via transmission electron microscopy and NTA analysis. siRNA interference was utilized to disrupt the expression of miR-21-5p in CAFs. Experiments in vivo validated the role of exosomal miR-21-5p in promoting malignant characteristics in osteosarcoma.</p><p><strong>Results: </strong>Single-cell RNA sequencing analysis of GSE162454 revealed the crucial role of CAFs in the pathogenesis of osteosarcoma. Tissue exosomal miRNA sequencing unveiled significant differential expression of miR-21-5p. Subsequently, aberrant upregulation of exosomal miR-21-5p exhibited a strong correlation with advanced clinical stage and poor prognosis in osteosarcoma. Further experiments in vitro indicated that elevated levels of miR-21-5p significantly enhanced proliferation and migration of osteosarcoma cells by suppressing ferroptosis. Moreover, experiments in vivo validated the capacity of CAFs-derived exosomal miR-21-5p to promote tumor growth and weight, thereby demonstrating their ability to deliver miR-21-5p to osteosarcoma cells and induce proliferation and migration through inhibition of ferroptosis.</p><p><strong>Conclusions: </strong>Our findings indicate that exosomal miR-21-5p could potentially serve as a therapeutic target in osteosarcoma, providing initial evidence for further clinical investigation.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"308"},"PeriodicalIF":6.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362868/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03930-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Osteosarcoma is one of the malignant tumors in children and adolescents patients. Uncontrolled and unlimited proliferation and metastasis lead to poor overall survival. CAFs play a pivotal role in the osteosarcoma tumor microenvironment, exerting significant influence on prognosis and treatment outcomes. However, there remains a need for further exploration into the intricate molecular mechanisms underlying CAFs.
Methods: Single-cell RNA sequencing was employed to characterize the microenvironment of osteosarcoma. Tissue exosomal miRNA sequencing was conducted on tumor tissues and adjacent normal tissues to screen for abnormal expression of exosomal miRNAs. WGCNA analysis was used to identify target exosomal miRNAs. The relative expression of miR-21-5p was analyzed using qRT-PCR. The proliferation rate and migration ability of tumor cells were assessed using the CCK8 and Transwell method, respectively. Exosomes derived from cells were extracted and characterized via transmission electron microscopy and NTA analysis. siRNA interference was utilized to disrupt the expression of miR-21-5p in CAFs. Experiments in vivo validated the role of exosomal miR-21-5p in promoting malignant characteristics in osteosarcoma.
Results: Single-cell RNA sequencing analysis of GSE162454 revealed the crucial role of CAFs in the pathogenesis of osteosarcoma. Tissue exosomal miRNA sequencing unveiled significant differential expression of miR-21-5p. Subsequently, aberrant upregulation of exosomal miR-21-5p exhibited a strong correlation with advanced clinical stage and poor prognosis in osteosarcoma. Further experiments in vitro indicated that elevated levels of miR-21-5p significantly enhanced proliferation and migration of osteosarcoma cells by suppressing ferroptosis. Moreover, experiments in vivo validated the capacity of CAFs-derived exosomal miR-21-5p to promote tumor growth and weight, thereby demonstrating their ability to deliver miR-21-5p to osteosarcoma cells and induce proliferation and migration through inhibition of ferroptosis.
Conclusions: Our findings indicate that exosomal miR-21-5p could potentially serve as a therapeutic target in osteosarcoma, providing initial evidence for further clinical investigation.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.