Substrate viscoelasticity regulates fibroblast adhesion and migration.

IF 1.9 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2025-07-01 DOI:10.1116/6.0004585
Neha Paddillaya, Akshar Rao, Anshul Shrivastava, Imnatoshi Jamir, Kundan Sengupta, Namrata Gundiah
{"title":"Substrate viscoelasticity regulates fibroblast adhesion and migration.","authors":"Neha Paddillaya, Akshar Rao, Anshul Shrivastava, Imnatoshi Jamir, Kundan Sengupta, Namrata Gundiah","doi":"10.1116/6.0004585","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical properties of the extracellular matrix (ECM) modulate cell-substrate interactions and influence cellular behaviors such as contractility, migration, and proliferation. Although the effects of substrate stiffness on mechanobiology have been well studied, the role of ECM viscoelasticity in fibrotic progression remains less understood. To examine how viscoelasticity affects the biophysical properties and regulates signaling of human mammary fibroblasts, we engineered elastic (E) and viscoelastic (VE) polyacrylamide hydrogels with comparable storage moduli (∼14.52 ± 1.03 kPa) but distinctly different loss moduli; mean loss moduli for VE gels was 36.9% higher at 0.05 Hz than E gels. Fibroblasts cultured on E hydrogels spread extensively (2428.93 ± 864.71 μm2), developed prominent stress fibers with higher zyxin intensity, and generated higher traction stresses (2931.57 ± 1732.61 Pa). In contrast, fibroblasts on VE substrates had 54.2% smaller focal adhesion areas, exhibited 51.8% lower critical adhesion strengths, and generated 21% lower traction stresses (p < 0.001). These substrates also promoted migration and showed enhanced proliferation with reduced Yes-associated protein (YAP) activity, suggesting a mechanotransduction shift that may involve alternative signaling pathways. In contrast, E substrates showed YAP nuclear translocation, consistent with greater cytoskeletal tension and contractility. These findings highlight the importance of energy dissipation mechanisms in regulating fibroblast function on substrates mimicking the fibrotic milieu. Our results demonstrate that tuning the ECM viscoelasticity is a useful strategy to regulate cell behaviors in tissue-engineered scaffolds and develop better disease modeling for regenerative medicine.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004585","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical properties of the extracellular matrix (ECM) modulate cell-substrate interactions and influence cellular behaviors such as contractility, migration, and proliferation. Although the effects of substrate stiffness on mechanobiology have been well studied, the role of ECM viscoelasticity in fibrotic progression remains less understood. To examine how viscoelasticity affects the biophysical properties and regulates signaling of human mammary fibroblasts, we engineered elastic (E) and viscoelastic (VE) polyacrylamide hydrogels with comparable storage moduli (∼14.52 ± 1.03 kPa) but distinctly different loss moduli; mean loss moduli for VE gels was 36.9% higher at 0.05 Hz than E gels. Fibroblasts cultured on E hydrogels spread extensively (2428.93 ± 864.71 μm2), developed prominent stress fibers with higher zyxin intensity, and generated higher traction stresses (2931.57 ± 1732.61 Pa). In contrast, fibroblasts on VE substrates had 54.2% smaller focal adhesion areas, exhibited 51.8% lower critical adhesion strengths, and generated 21% lower traction stresses (p < 0.001). These substrates also promoted migration and showed enhanced proliferation with reduced Yes-associated protein (YAP) activity, suggesting a mechanotransduction shift that may involve alternative signaling pathways. In contrast, E substrates showed YAP nuclear translocation, consistent with greater cytoskeletal tension and contractility. These findings highlight the importance of energy dissipation mechanisms in regulating fibroblast function on substrates mimicking the fibrotic milieu. Our results demonstrate that tuning the ECM viscoelasticity is a useful strategy to regulate cell behaviors in tissue-engineered scaffolds and develop better disease modeling for regenerative medicine.

底物粘弹性调节成纤维细胞粘附和迁移。
细胞外基质(ECM)的机械特性调节细胞与基质的相互作用,并影响细胞行为,如收缩性、迁移和增殖。虽然基质刚度对力学生物学的影响已经得到了很好的研究,但ECM粘弹性在纤维化进展中的作用仍然知之甚少。为了研究粘弹性如何影响人类乳腺成纤维细胞的生物物理特性和调节信号传导,我们设计了弹性(E)和粘弹性(VE)聚丙烯酰胺水凝胶,它们具有相似的储存模量(~ 14.52±1.03 kPa),但损失模量明显不同;0.05 Hz时VE凝胶的平均损失模量比E凝胶高36.9%。E水凝胶培养成纤维细胞分布广泛(2428.93±864.71 μm2),形成突出的应力纤维,酶强度较高,产生较高的牵引应力(2931.57±1732.61 Pa)。相比之下,VE基质上的成纤维细胞的黏附面积缩小了54.2%,临界黏附强度降低了51.8%,产生的牵引应力降低了21% (p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信