Ability of artificial intelligence to correctly predict inpatient versus observation hospital discharge status.

Q3 Medicine
Baylor University Medical Center Proceedings Pub Date : 2025-07-08 eCollection Date: 2025-01-01 DOI:10.1080/08998280.2025.2524877
Linley E Watson, Rodney A Light, Courtney Shaver
{"title":"Ability of artificial intelligence to correctly predict inpatient versus observation hospital discharge status.","authors":"Linley E Watson, Rodney A Light, Courtney Shaver","doi":"10.1080/08998280.2025.2524877","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study assessed the ability of a real-time artificial intelligence (AI) tool to correctly align early during hospitalization with the discharge status of inpatient versus observation.</p><p><strong>Methods: </strong>This retrospective case-control study at Baylor Scott & White Medical Center - Temple involved patients on 11 randomly chosen calendar days between August 2023 and October 2024. A real-time AI care level score (CLS) and machine learning likelihood (MeL) recommendations for inpatient versus observation discharge status were developed. Receiver operating characteristic curves were used to compare CLS, MeL, and commercial screening tool criteria with actual inpatient versus observation discharge status.</p><p><strong>Results: </strong>The receiver operating characteristic curve for CLS-based prediction of the MeL recommendation for inpatients had the highest area under the curve (AUC) of 0.9954 (95% confidence interval [CI] = 0.9954, 0.9998). The AUC for only CLS for predicting inpatient discharge was 0.8949 (95% CI = 0.8692, 0.9206). A CLS score ≥76 resulted in the highest correct classification rate of 86%. For CLS and the commercial screening tool, the AUC was the lowest at 0.8419 (95% CI = 0.8121, 0.871).</p><p><strong>Conclusions: </strong>Patients with a real-time AI CLS ≥76 had an 86% correct assignment of inpatient discharge status.</p>","PeriodicalId":8828,"journal":{"name":"Baylor University Medical Center Proceedings","volume":"38 5","pages":"662-665"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12351743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baylor University Medical Center Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08998280.2025.2524877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study assessed the ability of a real-time artificial intelligence (AI) tool to correctly align early during hospitalization with the discharge status of inpatient versus observation.

Methods: This retrospective case-control study at Baylor Scott & White Medical Center - Temple involved patients on 11 randomly chosen calendar days between August 2023 and October 2024. A real-time AI care level score (CLS) and machine learning likelihood (MeL) recommendations for inpatient versus observation discharge status were developed. Receiver operating characteristic curves were used to compare CLS, MeL, and commercial screening tool criteria with actual inpatient versus observation discharge status.

Results: The receiver operating characteristic curve for CLS-based prediction of the MeL recommendation for inpatients had the highest area under the curve (AUC) of 0.9954 (95% confidence interval [CI] = 0.9954, 0.9998). The AUC for only CLS for predicting inpatient discharge was 0.8949 (95% CI = 0.8692, 0.9206). A CLS score ≥76 resulted in the highest correct classification rate of 86%. For CLS and the commercial screening tool, the AUC was the lowest at 0.8419 (95% CI = 0.8121, 0.871).

Conclusions: Patients with a real-time AI CLS ≥76 had an 86% correct assignment of inpatient discharge status.

人工智能正确预测住院病人和观察病人出院情况的能力。
目的:本研究评估了实时人工智能(AI)工具在住院早期与住院患者出院状态和观察状态正确对齐的能力。方法:这项回顾性病例对照研究在Baylor Scott & White Medical Center - Temple,在2023年8月至2024年10月期间随机选择11个日历日的患者。制定了实时AI护理水平评分(CLS)和机器学习可能性(MeL)对住院患者和观察出院状态的建议。接受者工作特征曲线用于比较CLS、MeL和商业筛选工具标准与实际住院患者和观察出院状态。结果:基于cls预测住院患者MeL推荐的受试者工作特征曲线曲线下面积(AUC)最高,为0.9954(95%可信区间[CI] = 0.9954, 0.9998)。仅CLS预测住院患者出院的AUC为0.8949 (95% CI = 0.8692, 0.9206)。CLS评分≥76时,正确分类率最高,为86%。对于CLS和商业筛选工具,AUC最低,为0.8419 (95% CI = 0.8121, 0.871)。结论:实时AI CLS≥76的患者对住院出院状态的正确分配为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
245
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信