Informative data visualization with raincloud plots in JASP.

IF 3.9 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Vincent L Ott, Don van den Bergh, Bruno Boutin, Johnny van Doorn, František Bartoš, Nicholas Judd, Jordy van Langen, Luke Korthals, Rogier Kievit, Laura Groot, Eric-Jan Wagenmakers
{"title":"Informative data visualization with raincloud plots in JASP.","authors":"Vincent L Ott, Don van den Bergh, Bruno Boutin, Johnny van Doorn, František Bartoš, Nicholas Judd, Jordy van Langen, Luke Korthals, Rogier Kievit, Laura Groot, Eric-Jan Wagenmakers","doi":"10.3758/s13428-025-02773-5","DOIUrl":null,"url":null,"abstract":"<p><p>Proper data visualization helps researchers draw correct conclusions from their data and facilitates a more complete and transparent report of the results. In factorial designs, so-called raincloud plots have recently attracted attention as a particularly informative data visualization technique; raincloud plots can simultaneously show summary statistics (i.e., a box plot), a density estimate (i.e., the cloud), and the individual data points (i.e., the raindrops). Here we first present a 'raincloud quartet' that underscores the added value of raincloud plots over the traditional presentation of means and confidence intervals. The added value of raincloud plots appears to be increasingly recognized: a focused literature review of plots in Psychonomic Bulletin & Review shows that 9% of plots in 2023 were raincloud plots. Another 29% of plots (vs. 2% in 2013) contained individual data points (i.e., raindrops), indicating a strong trend towards transparent and informative data visualization. To further encourage this trend and make raincloud plotting easy and practical for a broader group of researchers and students, we implemented a comprehensive suite of raincloud plots in JASP, an open-source statistics program with an intuitive graphical user interface. Examples from two factorial research designs illustrate how the JASP raincloud plots support a correct and comprehensive interpretation of the data.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 9","pages":"265"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361279/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02773-5","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Proper data visualization helps researchers draw correct conclusions from their data and facilitates a more complete and transparent report of the results. In factorial designs, so-called raincloud plots have recently attracted attention as a particularly informative data visualization technique; raincloud plots can simultaneously show summary statistics (i.e., a box plot), a density estimate (i.e., the cloud), and the individual data points (i.e., the raindrops). Here we first present a 'raincloud quartet' that underscores the added value of raincloud plots over the traditional presentation of means and confidence intervals. The added value of raincloud plots appears to be increasingly recognized: a focused literature review of plots in Psychonomic Bulletin & Review shows that 9% of plots in 2023 were raincloud plots. Another 29% of plots (vs. 2% in 2013) contained individual data points (i.e., raindrops), indicating a strong trend towards transparent and informative data visualization. To further encourage this trend and make raincloud plotting easy and practical for a broader group of researchers and students, we implemented a comprehensive suite of raincloud plots in JASP, an open-source statistics program with an intuitive graphical user interface. Examples from two factorial research designs illustrate how the JASP raincloud plots support a correct and comprehensive interpretation of the data.

Abstract Image

Abstract Image

Abstract Image

在JASP中使用雨云图的信息数据可视化。
适当的数据可视化可以帮助研究人员从他们的数据中得出正确的结论,并促进更完整和透明的结果报告。在析因设计中,所谓的雨云图最近作为一种特别翔实的数据可视化技术引起了人们的注意;雨云图可以同时显示汇总统计数据(即箱形图)、密度估计(即云)和单个数据点(即雨滴)。在这里,我们首先提出了一个“雨云四重奏”,强调了雨云图在传统的均值和置信区间表示上的附加价值。雨云图的附加价值似乎越来越被认识到:《心理经济学公报与评论》(Psychonomic Bulletin & review)对雨云图的一篇重点文献综述显示,2023年9%的雨云图。另有29%的图(2013年为2%)包含单独的数据点(即雨滴),表明透明和信息丰富的数据可视化的强烈趋势。为了进一步鼓励这一趋势,并使雨云绘图对更广泛的研究人员和学生群体更容易和实用,我们在JASP中实现了一套全面的雨云绘图,JASP是一个具有直观图形用户界面的开源统计程序。来自两因子研究设计的例子说明了JASP雨云图如何支持对数据的正确和全面的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信