Cellular Olympics: Ultrafast Cellular Motility Across the Tree of Life.

IF 9.9 1区 生物学 Q1 MICROBIOLOGY
Ray Chang, Manu Prakash
{"title":"Cellular Olympics: Ultrafast Cellular Motility Across the Tree of Life.","authors":"Ray Chang, Manu Prakash","doi":"10.1146/annurev-micro-041020-021038","DOIUrl":null,"url":null,"abstract":"<p><p>Surprisingly, many single-celled organisms and specialized cell types can achieve speed and acceleration significantly faster than those of multicellular animals. These remarkable cellular machines must integrate energy storage and amplification in actuation, latches for triggered release, and energy dissipation without failure-all implemented in macromolecular assemblies inside a single cell. In this review, we first map the atlas of single cells across the tree of life that use ultrafast motility. We then quantitatively compare extreme acceleration, speed, area strain rate, volume expansion strain rate, and density change rate among single cells. Next, we generalize these ideas by placing various trigger, actuation, and dissipation mechanisms within a unified framework. We conclude with a detailed summary of the diverse functions enabled by ultrafast cellular motility, providing a comprehensive foundation for understanding extreme biophysics and its diverse role at the cellular scale.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-041020-021038","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Surprisingly, many single-celled organisms and specialized cell types can achieve speed and acceleration significantly faster than those of multicellular animals. These remarkable cellular machines must integrate energy storage and amplification in actuation, latches for triggered release, and energy dissipation without failure-all implemented in macromolecular assemblies inside a single cell. In this review, we first map the atlas of single cells across the tree of life that use ultrafast motility. We then quantitatively compare extreme acceleration, speed, area strain rate, volume expansion strain rate, and density change rate among single cells. Next, we generalize these ideas by placing various trigger, actuation, and dissipation mechanisms within a unified framework. We conclude with a detailed summary of the diverse functions enabled by ultrafast cellular motility, providing a comprehensive foundation for understanding extreme biophysics and its diverse role at the cellular scale.

细胞奥林匹克:跨越生命之树的超快细胞运动。
令人惊讶的是,许多单细胞生物和特殊细胞类型的速度和加速度比多细胞动物要快得多。这些非凡的细胞机器必须集成能量存储和放大驱动,锁存触发释放和能量耗散无故障-所有这些都在单个细胞内的大分子组件中实现。在这篇综述中,我们首先绘制了生命树中使用超快运动的单细胞图谱。然后,我们定量地比较了单个细胞的极端加速度、速度、面积应变率、体积膨胀应变率和密度变化率。接下来,我们通过在一个统一的框架内放置各种触发、驱动和耗散机制来概括这些想法。最后,我们详细总结了超快细胞运动所带来的各种功能,为理解极端生物物理学及其在细胞尺度上的多种作用提供了全面的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of microbiology
Annual review of microbiology 生物-微生物学
CiteScore
18.10
自引率
0.00%
发文量
37
期刊介绍: Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信