Nan Lin, Yakun Wang, Xiankun Wang, Yuxuan He, Xianhan Huang, Qun Liu, Hengchang Wang, Tao Deng
{"title":"Genomic Insights Into Local Adaptation Across Heterogeneous Understory Habitats and Climate Change Vulnerability","authors":"Nan Lin, Yakun Wang, Xiankun Wang, Yuxuan He, Xianhan Huang, Qun Liu, Hengchang Wang, Tao Deng","doi":"10.1111/mec.70068","DOIUrl":null,"url":null,"abstract":"<p>Understanding adaptive evolution and survival risks in understory herbs is crucial for the effective conservation of biodiversity. How environmental gradients shape species local adaptation patterns is not well understood, nor is how populations of understory herbs respond to a changing climate. In this study, we conducted population genomic analyses of <i>Adenocaulon himalaicum</i> (Asteraceae) with a pan-East Asian distribution, representing a good model for dominant understory herbs to elucidate adaptation mechanisms in heterogeneous forest ecosystems. Based on 34,398 putatively neutral single nucleotide polymorphisms (SNPs) across 27 populations, we identified three genetic lineages accompanied by high levels of genetic differentiation between populations. Our isolation by environment results (IBE) indicated a significant effect of environmental gradients on genomic variation of <i>A. himalaicum</i> (<i>r</i> = 0.18, <i>p</i> = 0.03). To decompose the relative contributions of climate, geography and population structure in explaining genetic variance, our partial RDA found that the prominent contribution of environmental effects (climatic and soil variables) explained 29% and 36% of the neutral and adaptive genetic variation, respectively. Using two genotype–environment association (GEA) methods, we identified 13 SNPs as candidates for core climate-related adaptation loci, with two of these loci further validated by qRT-PCR experiments. Projections of spatiotemporal genomic vulnerability under different future climate scenarios revealed that populations in the southeastern edge of the Himalayas, near the Sichuan Basin, the southernmost region of Northeast China and the northern Korean Peninsula, as well as northern Japan, were identified as the most vulnerable and should be prioritised for conservation. Therefore, our current study provides the genomic foundations for conservation and management strategies to elucidate how these understory herbs cope with future climate changes.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 19","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.70068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.70068","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding adaptive evolution and survival risks in understory herbs is crucial for the effective conservation of biodiversity. How environmental gradients shape species local adaptation patterns is not well understood, nor is how populations of understory herbs respond to a changing climate. In this study, we conducted population genomic analyses of Adenocaulon himalaicum (Asteraceae) with a pan-East Asian distribution, representing a good model for dominant understory herbs to elucidate adaptation mechanisms in heterogeneous forest ecosystems. Based on 34,398 putatively neutral single nucleotide polymorphisms (SNPs) across 27 populations, we identified three genetic lineages accompanied by high levels of genetic differentiation between populations. Our isolation by environment results (IBE) indicated a significant effect of environmental gradients on genomic variation of A. himalaicum (r = 0.18, p = 0.03). To decompose the relative contributions of climate, geography and population structure in explaining genetic variance, our partial RDA found that the prominent contribution of environmental effects (climatic and soil variables) explained 29% and 36% of the neutral and adaptive genetic variation, respectively. Using two genotype–environment association (GEA) methods, we identified 13 SNPs as candidates for core climate-related adaptation loci, with two of these loci further validated by qRT-PCR experiments. Projections of spatiotemporal genomic vulnerability under different future climate scenarios revealed that populations in the southeastern edge of the Himalayas, near the Sichuan Basin, the southernmost region of Northeast China and the northern Korean Peninsula, as well as northern Japan, were identified as the most vulnerable and should be prioritised for conservation. Therefore, our current study provides the genomic foundations for conservation and management strategies to elucidate how these understory herbs cope with future climate changes.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms