Sanghoon Lee, Won Gi Chung, Enji Kim, Eunmin Kim, Joonho Paek, Dayeon Kim, Seung Hyun An, Taekyeong Lee, Jung Ah Lim and Jang-Ung Park
{"title":"Wearable and implantable microfluidic technologies for future digital therapeutics","authors":"Sanghoon Lee, Won Gi Chung, Enji Kim, Eunmin Kim, Joonho Paek, Dayeon Kim, Seung Hyun An, Taekyeong Lee, Jung Ah Lim and Jang-Ung Park","doi":"10.1039/D5LC00525F","DOIUrl":null,"url":null,"abstract":"<p >Microfluidic technology, originally developed for lab-on-a-chip applications, has rapidly expanded into wearable and implantable biomedical systems, enabling precise fluid handling for real-time biosensing, targeted drug delivery, and closed-loop therapeutics. This review provides a comprehensive overview of recent advancements in microfluidic platforms designed for integration with the human body, focusing on both wearable devices and implantable systems. Key design strategies are highlighted, including the integration of microfluidics with soft electronics, wireless communication, and multimodal sensing to enhance mechanical adaptability and functional versatility in dynamic biological environments. In addition, three critical technological directions for advancing digital therapeutics are discussed, particularly focusing on system-level stretchability, multimodal module integration, and artificial intelligence-driven data processing. These capabilities will serve as the foundation for transforming current microfluidic systems into intelligent, autonomous platforms, which will play a pivotal role in shaping future digital therapeutics that are personalized, responsive, and seamlessly integrated into everyday healthcare.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 18","pages":" 4508-4541"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lc/d5lc00525f","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Microfluidic technology, originally developed for lab-on-a-chip applications, has rapidly expanded into wearable and implantable biomedical systems, enabling precise fluid handling for real-time biosensing, targeted drug delivery, and closed-loop therapeutics. This review provides a comprehensive overview of recent advancements in microfluidic platforms designed for integration with the human body, focusing on both wearable devices and implantable systems. Key design strategies are highlighted, including the integration of microfluidics with soft electronics, wireless communication, and multimodal sensing to enhance mechanical adaptability and functional versatility in dynamic biological environments. In addition, three critical technological directions for advancing digital therapeutics are discussed, particularly focusing on system-level stretchability, multimodal module integration, and artificial intelligence-driven data processing. These capabilities will serve as the foundation for transforming current microfluidic systems into intelligent, autonomous platforms, which will play a pivotal role in shaping future digital therapeutics that are personalized, responsive, and seamlessly integrated into everyday healthcare.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.