Molecular Engineering of Intrinsic Chromophoric Polyimides: Chemically Amplified Color Photoresists for Advanced Optical Systems

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zihui Liu, Xiaojie He, Huiyang Lu, Jiachen Wan, Jianan Yuan* and Qinghua Lu*, 
{"title":"Molecular Engineering of Intrinsic Chromophoric Polyimides: Chemically Amplified Color Photoresists for Advanced Optical Systems","authors":"Zihui Liu,&nbsp;Xiaojie He,&nbsp;Huiyang Lu,&nbsp;Jiachen Wan,&nbsp;Jianan Yuan* and Qinghua Lu*,&nbsp;","doi":"10.1021/acsami.5c11782","DOIUrl":null,"url":null,"abstract":"<p >Color photoresists represent a cornerstone technology in advanced optical systems, enabling critical functionalities ranging from flexible display pixel manufacturing to direct lithography of antidust color coatings for space exploration equipment. While conventional dye–polymer composite photoresists dominate industrial applications, their intrinsic limitations in thermal stability, mechanical durability, electrical insulation, and long-term color stability fundamentally restrict their deployment in extreme environments. This study pioneers a molecular engineering strategy to overcome these challenges through the development of intrinsically colored photosensitive polyimides (PSPIs). By strategically incorporating anthraquinone chromophores into polyimide backbones and/or terminal groups, we achieved precise spectral control across the visible spectrum (RGB tricolors). The optimized four-component photoresist system integrates PSPIs, photoacid generators, alkaline additives, and cross-linkers, enabling high-resolution lithography (10 μm feature size). The synthesized PSPIs exhibit high thermal performance with glass transition temperatures exceeding 270 °C and 5% decomposition temperatures above 410 °C. Crucially, they demonstrate outstanding color stability under multienvironmental stresses including cryogenic conditions (−193 °C), thermal cycling (140 °C), and prolonged UV exposure. Therefore, this molecular design strategy establishes a scalable platform for engineering mission-adaptable colored photoresists simultaneously without compromising the exceptional material properties inherent to polyimides.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 36","pages":"51182–51192"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c11782","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Color photoresists represent a cornerstone technology in advanced optical systems, enabling critical functionalities ranging from flexible display pixel manufacturing to direct lithography of antidust color coatings for space exploration equipment. While conventional dye–polymer composite photoresists dominate industrial applications, their intrinsic limitations in thermal stability, mechanical durability, electrical insulation, and long-term color stability fundamentally restrict their deployment in extreme environments. This study pioneers a molecular engineering strategy to overcome these challenges through the development of intrinsically colored photosensitive polyimides (PSPIs). By strategically incorporating anthraquinone chromophores into polyimide backbones and/or terminal groups, we achieved precise spectral control across the visible spectrum (RGB tricolors). The optimized four-component photoresist system integrates PSPIs, photoacid generators, alkaline additives, and cross-linkers, enabling high-resolution lithography (10 μm feature size). The synthesized PSPIs exhibit high thermal performance with glass transition temperatures exceeding 270 °C and 5% decomposition temperatures above 410 °C. Crucially, they demonstrate outstanding color stability under multienvironmental stresses including cryogenic conditions (−193 °C), thermal cycling (140 °C), and prolonged UV exposure. Therefore, this molecular design strategy establishes a scalable platform for engineering mission-adaptable colored photoresists simultaneously without compromising the exceptional material properties inherent to polyimides.

Abstract Image

内在显色性聚酰亚胺的分子工程:用于先进光学系统的化学放大彩色光刻胶。
彩色光刻胶代表了先进光学系统的基石技术,实现了从柔性显示像素制造到太空探索设备防尘彩色涂层的直接光刻等关键功能。虽然传统的染料聚合物复合光刻胶在工业应用中占主导地位,但它们在热稳定性、机械耐久性、电绝缘性和长期颜色稳定性方面的固有局限性从根本上限制了它们在极端环境中的应用。本研究开创了一种分子工程策略,通过开发本色光敏聚酰亚胺(pspi)来克服这些挑战。通过将蒽醌发色团战略性地整合到聚酰亚胺骨架和/或末端基团中,我们实现了在可见光谱(RGB三色)上的精确光谱控制。优化后的四组分光刻胶系统集成了pspi、光酸发生器、碱性添加剂和交联剂,可实现高分辨率光刻(10 μm特征尺寸)。合成的pspi具有较高的热性能,玻璃化转变温度超过270℃,分解温度超过410℃,分解温度为5%。至关重要的是,它们在多种环境压力下表现出出色的颜色稳定性,包括低温条件(-193°C)、热循环(140°C)和长时间紫外线照射。因此,这种分子设计策略为工程任务适应性彩色光刻胶建立了一个可扩展的平台,同时又不影响聚酰亚胺固有的特殊材料特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信