{"title":"Reprocessable and Highly Creep-Resistant Covalent Adaptable Networks Incorporating Azine Dynamic Cross-Links via Free-Radical Polymerization","authors":"Mathew J. Suazo, and , John M. Torkelson*, ","doi":"10.1021/acsmacrolett.5c00299","DOIUrl":null,"url":null,"abstract":"<p >Covalent adaptable networks (CANs) are a promising avenue for replacing conventional, unrecyclable thermosets with reprocessable, more sustainable networks incorporating dynamic cross-links. Azine dynamic chemistry has recently been explored and, thus far, has only been incorporated into step-growth CANs. We developed an azine-based cross-linker with methacrylate end groups, enabling radical-based CAN synthesis. Free-radical copolymerization of this cross-linker with <i>n</i>-hexyl methacrylate yielded robust CANs with full property recovery upon reprocessing by compression molding at 120 °C. The associative azine dynamic chemistry resulted in constant cross-link density across the rubbery plateau, extraordinary creep suppression at temperatures of 190–210 °C, and severely limited stress relaxation at temperatures as high as 200–210 °C; nevertheless, this did not hinder the CAN’s reprocessability by compression molding at 120 °C and 8 MPa pressure. Finally, preliminary injection molding and extrusion experiments at temperatures of 200–210 °C indicated the potential feasibility of these methods for azine-based CAN production.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"14 9","pages":"1248–1255"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmacrolett.5c00299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent adaptable networks (CANs) are a promising avenue for replacing conventional, unrecyclable thermosets with reprocessable, more sustainable networks incorporating dynamic cross-links. Azine dynamic chemistry has recently been explored and, thus far, has only been incorporated into step-growth CANs. We developed an azine-based cross-linker with methacrylate end groups, enabling radical-based CAN synthesis. Free-radical copolymerization of this cross-linker with n-hexyl methacrylate yielded robust CANs with full property recovery upon reprocessing by compression molding at 120 °C. The associative azine dynamic chemistry resulted in constant cross-link density across the rubbery plateau, extraordinary creep suppression at temperatures of 190–210 °C, and severely limited stress relaxation at temperatures as high as 200–210 °C; nevertheless, this did not hinder the CAN’s reprocessability by compression molding at 120 °C and 8 MPa pressure. Finally, preliminary injection molding and extrusion experiments at temperatures of 200–210 °C indicated the potential feasibility of these methods for azine-based CAN production.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.