Fiona M. Seaton, David A. Robinson, Claire M. Wood, Clare M. H. Benskin, Rebecca L. Rowe, Karen Hornigold, Keith J. Kirby, Chris Nichols, Simon M. Smart
{"title":"Forest Topsoil Organic Carbon Declines Under Ash Dieback","authors":"Fiona M. Seaton, David A. Robinson, Claire M. Wood, Clare M. H. Benskin, Rebecca L. Rowe, Karen Hornigold, Keith J. Kirby, Chris Nichols, Simon M. Smart","doi":"10.1111/gcb.70430","DOIUrl":null,"url":null,"abstract":"<p>Tree diseases are increasingly affecting woodland ecosystems across the world. However, the impact of these diseases upon the soil, and in particular soil carbon, is still poorly understood. Here we present the results of a field survey of ~100 woodlands across Great Britain measured in 1971, 2001 and 2022 and evaluate the fifty-year trend in topsoil (0–15 cm) carbon based upon measurements of soil organic matter (SOM) and the impact of <i>Hymenoscyphus fraxineus</i> (ash dieback). To better represent the full SOM distribution, including the extremely high SOM measurements, we adopt a Beta mixture modelling approach within a Bayesian framework. Across all woodlands, comprising ~1,500 plots per survey, average SOM remained constant across the fifty-year time series. However, the 311 plots with ash dieback had lower SOM in the most recent survey compared to the 328 plots with ash trees present but no dieback recorded, due to a slight decline in SOM under ash dieback. This resulted in plots with ash dieback having a modelled mean SOM of 12.2% compared to 13.4% in plots without ash dieback, a difference of 1.23 percentage points (95% CI 0.25–2.21). Ash dieback was more likely to be recorded in plots that had higher soil pH pre-ash dieback invasion, but the decline in SOM under ash dieback was not explained by changes in soil pH or changes in the ground flora composition. Converting our results to soil C and extrapolating for broadleaved woodland across the entirety of Great Britain, the total amount of topsoil carbon lost to date due to ash dieback could be 6 MtCO<sub>2</sub> (± 4 s.d.). Our results show the importance of understanding the impacts of tree disease when considering current and future woodland carbon dynamics.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 8","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70430","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70430","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Tree diseases are increasingly affecting woodland ecosystems across the world. However, the impact of these diseases upon the soil, and in particular soil carbon, is still poorly understood. Here we present the results of a field survey of ~100 woodlands across Great Britain measured in 1971, 2001 and 2022 and evaluate the fifty-year trend in topsoil (0–15 cm) carbon based upon measurements of soil organic matter (SOM) and the impact of Hymenoscyphus fraxineus (ash dieback). To better represent the full SOM distribution, including the extremely high SOM measurements, we adopt a Beta mixture modelling approach within a Bayesian framework. Across all woodlands, comprising ~1,500 plots per survey, average SOM remained constant across the fifty-year time series. However, the 311 plots with ash dieback had lower SOM in the most recent survey compared to the 328 plots with ash trees present but no dieback recorded, due to a slight decline in SOM under ash dieback. This resulted in plots with ash dieback having a modelled mean SOM of 12.2% compared to 13.4% in plots without ash dieback, a difference of 1.23 percentage points (95% CI 0.25–2.21). Ash dieback was more likely to be recorded in plots that had higher soil pH pre-ash dieback invasion, but the decline in SOM under ash dieback was not explained by changes in soil pH or changes in the ground flora composition. Converting our results to soil C and extrapolating for broadleaved woodland across the entirety of Great Britain, the total amount of topsoil carbon lost to date due to ash dieback could be 6 MtCO2 (± 4 s.d.). Our results show the importance of understanding the impacts of tree disease when considering current and future woodland carbon dynamics.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.