{"title":"Surface-Engineered Natural Killer Cell-Derived Small Extracellular Vesicles Induce Potent Anti-Tumour Effects in Lung Cancer Cells","authors":"Sung-Min Kang, Dokyung Jung, Soojeong Noh, Sanghee Shin, Minju Kim, Hanchae Cho, Byungheon Lee, Kyungmoo Yea, Moon-Chang Baek","doi":"10.1002/jex2.70080","DOIUrl":null,"url":null,"abstract":"<p>Small extracellular vesicles (sEVs) derived from natural killer (NK) cells possess inherent anti-tumour activity and offer the advantages of cell-free therapy. In this study, we genetically engineered NK-sEVs to express interleukin 15 (IL15), an anti-tumour cytokine, and the monoclonal antibody cetuximab on their surface, creating a potent anti-tumour immunotherapy with enhanced tumour-targeting capabilities. These IL15- and cetuximab-tethered NK-sEVs (eEVs) were generated using lentivirus-based modification. eEVs selectively bound to EGFR<sup>+</sup> cancer cells in vitro, confirming cetuximab-mediated targeting. Compared to control NK-sEVs, eEVs exhibited significantly enhanced cytotoxicity by directly inducing cancer cell death and promoting NK cell-mediated killing. In a lung cancer mouse model, eEVs selectively accumulated in tumours and exhibited significant anti-tumour efficacy. Notably, their administration, alone or in combination with anti-PD-1 antibody therapy, effectively suppressed tumour growth. Overall, our results indicate that genetically engineered NK-sEVs, equipped with IL15 and cetuximab, exhibit potent anti-tumour activity and tumour-targeting capabilities. These findings suggest that eEVs hold significant potential as a novel immunotherapeutic strategy for cancer treatment.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"4 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of extracellular biology","FirstCategoryId":"1085","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jex2.70080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Small extracellular vesicles (sEVs) derived from natural killer (NK) cells possess inherent anti-tumour activity and offer the advantages of cell-free therapy. In this study, we genetically engineered NK-sEVs to express interleukin 15 (IL15), an anti-tumour cytokine, and the monoclonal antibody cetuximab on their surface, creating a potent anti-tumour immunotherapy with enhanced tumour-targeting capabilities. These IL15- and cetuximab-tethered NK-sEVs (eEVs) were generated using lentivirus-based modification. eEVs selectively bound to EGFR+ cancer cells in vitro, confirming cetuximab-mediated targeting. Compared to control NK-sEVs, eEVs exhibited significantly enhanced cytotoxicity by directly inducing cancer cell death and promoting NK cell-mediated killing. In a lung cancer mouse model, eEVs selectively accumulated in tumours and exhibited significant anti-tumour efficacy. Notably, their administration, alone or in combination with anti-PD-1 antibody therapy, effectively suppressed tumour growth. Overall, our results indicate that genetically engineered NK-sEVs, equipped with IL15 and cetuximab, exhibit potent anti-tumour activity and tumour-targeting capabilities. These findings suggest that eEVs hold significant potential as a novel immunotherapeutic strategy for cancer treatment.