A Study on Nodal and Isogeometric Formulations for Nonlinear Dynamics of Shear- and Torsion-Free Rods

IF 2.9 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Thi-Hoa Nguyen, Bruno A. Roccia, Dominik Schillinger, Cristian G. Gebhardt
{"title":"A Study on Nodal and Isogeometric Formulations for Nonlinear Dynamics of Shear- and Torsion-Free Rods","authors":"Thi-Hoa Nguyen,&nbsp;Bruno A. Roccia,&nbsp;Dominik Schillinger,&nbsp;Cristian G. Gebhardt","doi":"10.1002/nme.70104","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, we compare the nodal and isogeometric spatial discretization schemes for the nonlinear formulation of shear- and torsion-free rods introduced in Gebhardt and Romero (see Reference no. 31). We investigate the resulting discrete solution space, the accuracy, and the computational cost of these spatial discretization schemes. To fulfill the required <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^1 $$</annotation>\n </semantics></math> continuity of the rod formulation, the nodal scheme discretizes the rod in terms of its nodal positions and directors using cubic Hermite splines. Isogeometric discretizations naturally fulfill this with smooth spline basis functions and discretize the rod only in terms of the positions of the control points (see Nguyen et al. in Reference no. 41), which leads to a discrete solution in multiple copies of the Euclidean space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathbb{R}}^3 $$</annotation>\n </semantics></math>. They enable the employment of basis functions of one degree lower, that is, quadratic <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>C</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {C}^1 $$</annotation>\n </semantics></math> splines, and possibly reduce the number of degrees of freedom (dofs). When using the nodal scheme, since the defined director field is in the unit sphere <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>S</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {S}^2 $$</annotation>\n </semantics></math>, preserving this for the nodal director variable field requires an additional constraint of unit nodal directors. This leads to a discrete solution in multiple copies of the manifold <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>×</mo>\n <msup>\n <mrow>\n <mi>S</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathbb{R}}^3\\times {S}^2 $$</annotation>\n </semantics></math>; however, it results in zero nodal axial stress values. Allowing arbitrary length for the nodal directors, that is a nodal director field in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathbb{R}}^3 $$</annotation>\n </semantics></math> instead of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>S</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {S}^2 $$</annotation>\n </semantics></math> as within discrete rod elements, eliminates the constrained nodal axial stresses and leads to a discrete solution in multiple copies of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathbb{R}}^3 $$</annotation>\n </semantics></math>. To enforce the unit nodal director constraint, we discuss two approaches using the Lagrange multiplier and penalty methods. We compare the resulting semi-discrete formulations and the computational cost of these discretization variants. We numerically demonstrate our findings via examples of a planar roll-up, a catenary, and a mooring line.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 16","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70104","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we compare the nodal and isogeometric spatial discretization schemes for the nonlinear formulation of shear- and torsion-free rods introduced in Gebhardt and Romero (see Reference no. 31). We investigate the resulting discrete solution space, the accuracy, and the computational cost of these spatial discretization schemes. To fulfill the required C 1 $$ {C}^1 $$ continuity of the rod formulation, the nodal scheme discretizes the rod in terms of its nodal positions and directors using cubic Hermite splines. Isogeometric discretizations naturally fulfill this with smooth spline basis functions and discretize the rod only in terms of the positions of the control points (see Nguyen et al. in Reference no. 41), which leads to a discrete solution in multiple copies of the Euclidean space 3 $$ {\mathbb{R}}^3 $$ . They enable the employment of basis functions of one degree lower, that is, quadratic C 1 $$ {C}^1 $$ splines, and possibly reduce the number of degrees of freedom (dofs). When using the nodal scheme, since the defined director field is in the unit sphere S 2 $$ {S}^2 $$ , preserving this for the nodal director variable field requires an additional constraint of unit nodal directors. This leads to a discrete solution in multiple copies of the manifold 3 × S 2 $$ {\mathbb{R}}^3\times {S}^2 $$ ; however, it results in zero nodal axial stress values. Allowing arbitrary length for the nodal directors, that is a nodal director field in 3 $$ {\mathbb{R}}^3 $$ instead of S 2 $$ {S}^2 $$ as within discrete rod elements, eliminates the constrained nodal axial stresses and leads to a discrete solution in multiple copies of 3 $$ {\mathbb{R}}^3 $$ . To enforce the unit nodal director constraint, we discuss two approaches using the Lagrange multiplier and penalty methods. We compare the resulting semi-discrete formulations and the computational cost of these discretization variants. We numerically demonstrate our findings via examples of a planar roll-up, a catenary, and a mooring line.

无剪切和无扭转杆非线性动力学的节点和等几何公式研究
在这项工作中,我们比较了Gebhardt和Romero介绍的无剪切和无扭转杆的非线性公式的节点和等几何空间离散化方案。31)。我们研究了这些空间离散化方案的离散解空间、精度和计算成本。为了满足所需的c1 $$ {C}^1 $$杆公式连续性,节点方案使用三次埃尔米特样条将杆根据其节点位置和方向离散化。等几何离散化自然地用光滑样条基函数实现了这一点,并且只根据控制点的位置对杆进行离散化(参见参考文献no. 1中的Nguyen等人)。41),这导致在欧几里得空间的多个副本中的离散解,$$ {\mathbb{R}}^3 $$。它们可以使用低一次的基函数,即二次c1 $$ {C}^1 $$样条,并可能减少自由度(dofs)的数量。当使用节点方案时,由于定义的导演字段位于单位球面s2 $$ {S}^2 $$中,因此为节点导演变量字段保留这一点需要对单位节点导演进行额外约束。这导致了一个离散解在流形的多个拷贝中得到$$ {\mathbb{R}}^3\times {S}^2 $$;然而,它导致零节点轴向应力值。允许任意长度的节点指示,它是一个节点指向域,在,S, 3, $$ {\mathbb{R}}^3 $$,而不是s2$$ {S}^2 $$在离散杆单元中,消除了受约束的节点轴向应力,并导致了多个副本的离散解$$ {\mathbb{R}}^3 $$。为了加强单位节点指示约束,我们讨论了使用拉格朗日乘子和惩罚方法的两种方法。我们比较了所得的半离散公式和这些离散化变量的计算成本。我们通过平面卷绕、悬链线和系泊线的例子,在数值上证明了我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信