USP5-Rich Apoptotic Extracellular Vesicles Regulate Nucleus Pulposus Cells Apoptosis and DNA Damage Repair by Preventing E2F1 Proteasomal Degradation

IF 14.5 1区 医学 Q1 CELL BIOLOGY
Pengzhi Shi, Haiyang Gao, Zhangrong Cheng, Wenbo Wu, Anran Zhang, Xianglong Chen, Wang Wu, Yukun Zhang
{"title":"USP5-Rich Apoptotic Extracellular Vesicles Regulate Nucleus Pulposus Cells Apoptosis and DNA Damage Repair by Preventing E2F1 Proteasomal Degradation","authors":"Pengzhi Shi,&nbsp;Haiyang Gao,&nbsp;Zhangrong Cheng,&nbsp;Wenbo Wu,&nbsp;Anran Zhang,&nbsp;Xianglong Chen,&nbsp;Wang Wu,&nbsp;Yukun Zhang","doi":"10.1002/jev2.70148","DOIUrl":null,"url":null,"abstract":"<p>Mesenchymal stem cell (MSC) transplantation is considered one of the most promising regenerative strategies for treating degenerative musculoskeletal diseases, yet its underlying therapeutic mechanisms remain incompletely understood. In this study, we demonstrate that transplanted MSCs regulate apoptosis and DNA damage repair (DDR) in senescent nucleus pulposus cells (NPCs) by releasing apoptotic extracellular vesicles (ApoEVs), thereby delaying the process of intervertebral disc degeneration (IVDD). Mechanistically, we found that NPCs in degenerated discs exhibit abnormal subcellular localization of the deubiquitinase ubiquitin specific peptidase 5 (USP5), with excessive cytoplasmic retention leading to aberrant ubiquitination and degradation of the E2F transcription factor 1 (E2F1). Following transplantation into the degenerative disc microenvironment, MSCs undergo extensive apoptosis in the short-term and release ApoEVs enriched in highly acetylated USP5. These vesicles promote nuclear translocation of USP5 in NPCs, which stabilizes E2F1 by preventing its ubiquitin-mediated degradation. This cascade reduces DNA damage and apoptosis in NPCs and enhances their functional activity. Overall, our findings reveal a previously unrecognized mechanism by which apoptotic donor MSCs exert therapeutic effects through intercellular communication, specifically by modulating recipient NPCs apoptosis and DDR pathways. This study underscores the critical role of donor cell apoptosis in the therapeutic efficacy of stem cell transplantation and provides new insights for optimizing regenerative medicine strategies.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 8","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://isevjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70148","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://isevjournals.onlinelibrary.wiley.com/doi/10.1002/jev2.70148","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mesenchymal stem cell (MSC) transplantation is considered one of the most promising regenerative strategies for treating degenerative musculoskeletal diseases, yet its underlying therapeutic mechanisms remain incompletely understood. In this study, we demonstrate that transplanted MSCs regulate apoptosis and DNA damage repair (DDR) in senescent nucleus pulposus cells (NPCs) by releasing apoptotic extracellular vesicles (ApoEVs), thereby delaying the process of intervertebral disc degeneration (IVDD). Mechanistically, we found that NPCs in degenerated discs exhibit abnormal subcellular localization of the deubiquitinase ubiquitin specific peptidase 5 (USP5), with excessive cytoplasmic retention leading to aberrant ubiquitination and degradation of the E2F transcription factor 1 (E2F1). Following transplantation into the degenerative disc microenvironment, MSCs undergo extensive apoptosis in the short-term and release ApoEVs enriched in highly acetylated USP5. These vesicles promote nuclear translocation of USP5 in NPCs, which stabilizes E2F1 by preventing its ubiquitin-mediated degradation. This cascade reduces DNA damage and apoptosis in NPCs and enhances their functional activity. Overall, our findings reveal a previously unrecognized mechanism by which apoptotic donor MSCs exert therapeutic effects through intercellular communication, specifically by modulating recipient NPCs apoptosis and DDR pathways. This study underscores the critical role of donor cell apoptosis in the therapeutic efficacy of stem cell transplantation and provides new insights for optimizing regenerative medicine strategies.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

富含usp5的凋亡细胞外囊泡通过阻止E2F1蛋白酶体降解调节髓核细胞凋亡和DNA损伤修复
间充质干细胞(MSC)移植被认为是治疗退行性肌肉骨骼疾病最有前途的再生策略之一,但其潜在的治疗机制仍不完全清楚。在本研究中,我们发现移植的间充质干细胞通过释放凋亡的细胞外囊泡(ApoEVs)调节衰老髓核细胞(NPCs)的凋亡和DNA损伤修复(DDR),从而延缓椎间盘退变(IVDD)的过程。在机制上,我们发现变性椎间盘中的npc表现出异常的去泛素酶泛素特异性肽酶5 (USP5)的亚细胞定位,过度的细胞质保留导致异常的泛素化和E2F转录因子1 (E2F1)的降解。移植到退行性椎间盘微环境后,MSCs在短期内发生广泛的凋亡,并释放富含高度乙酰化USP5的apoev。这些囊泡促进NPCs中USP5的核易位,通过阻止其泛素介导的降解来稳定E2F1。这种级联减少了npc的DNA损伤和凋亡,增强了它们的功能活性。总的来说,我们的研究结果揭示了一种以前未被认识到的机制,即凋亡的供体间充质干细胞通过细胞间通讯发挥治疗作用,特别是通过调节受体npc凋亡和DDR途径。本研究强调了供体细胞凋亡在干细胞移植治疗效果中的关键作用,并为优化再生医学策略提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Extracellular Vesicles
Journal of Extracellular Vesicles Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
27.30
自引率
4.40%
发文量
115
审稿时长
12 weeks
期刊介绍: The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies. The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信