Co-Digestion of Abattoir Effluent and Rumen Content for Waste Management and Biogas Production

IF 2.9 4区 工程技术 Q3 ENERGY & FUELS
Kudzai Mutisi, Mabatho Moreroa
{"title":"Co-Digestion of Abattoir Effluent and Rumen Content for Waste Management and Biogas Production","authors":"Kudzai Mutisi,&nbsp;Mabatho Moreroa","doi":"10.1049/rpg2.70123","DOIUrl":null,"url":null,"abstract":"<p>This study examined the feasibility of using two primary waste types from a local abattoir for waste management and subsequent biogas production. In the study, wastewater (WW) and rumen content (RC) found at a red meat abattoir were used as substrates during anaerobic digestion (AD). An automated methane potential test system (AMPTS III) was employed to digest the substrates at different doses at 35°C. The raw WW exhibited a soluble chemical oxygen demand (sCOD) of 74 g/L, indicating excessively high levels. Following AD, the maximum COD removal was observed during mono-digestion of RC, achieving a removal rate of 92.6% and a final sCOD of 3.2 g/L. The production of biogas was attributed to high RC loadings, wherein a cumulative biogas production of 1791 NmL/gCOD<sub>removed</sub> was produced over 24 days, while biomethane and carbon dioxide production was 491.1 NmL/gCOD<sub>removed</sub> and 1300 NmL/gCOD<sub>removed</sub> over the same period. The study indicated that the inclusion of RC reduced the rate of pH decline in the digester, suggesting its viability as a material for AD. Typically, mono-digestion of the abattoir WW yields biomethane with a purity of up to 96.96%, while mono-digestion of RC yields high amounts of carbon dioxide.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70123","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rpg2.70123","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined the feasibility of using two primary waste types from a local abattoir for waste management and subsequent biogas production. In the study, wastewater (WW) and rumen content (RC) found at a red meat abattoir were used as substrates during anaerobic digestion (AD). An automated methane potential test system (AMPTS III) was employed to digest the substrates at different doses at 35°C. The raw WW exhibited a soluble chemical oxygen demand (sCOD) of 74 g/L, indicating excessively high levels. Following AD, the maximum COD removal was observed during mono-digestion of RC, achieving a removal rate of 92.6% and a final sCOD of 3.2 g/L. The production of biogas was attributed to high RC loadings, wherein a cumulative biogas production of 1791 NmL/gCODremoved was produced over 24 days, while biomethane and carbon dioxide production was 491.1 NmL/gCODremoved and 1300 NmL/gCODremoved over the same period. The study indicated that the inclusion of RC reduced the rate of pH decline in the digester, suggesting its viability as a material for AD. Typically, mono-digestion of the abattoir WW yields biomethane with a purity of up to 96.96%, while mono-digestion of RC yields high amounts of carbon dioxide.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

用于废物管理和沼气生产的屠宰场污水和瘤胃内容物的共消化
这项研究审查了利用当地屠宰场的两种主要废物类型进行废物管理和随后的沼气生产的可行性。本研究以某红肉屠宰场的废水(WW)和瘤胃内容物(RC)作为厌氧消化(AD)的底物。采用自动化甲烷电位测试系统(AMPTS III)在35°C下消化不同剂量的底物。原料WW的可溶性化学需氧量(sCOD)为74 g/L,表明其含量过高。经AD处理后,RC单消化时COD去除率最高,去除率为92.6%,最终sCOD为3.2 g/L。沼气的生产归因于高RC负荷,其中24天内累计沼气产量为1791 NmL/gCODremoved,而同期生物甲烷和二氧化碳产量为491.1 NmL/gCODremoved和1300 NmL/gCODremoved。研究表明,RC的加入降低了消化池pH下降的速度,表明其作为AD材料的可行性。通常,屠宰场WW的单消化产生纯度高达96.96%的生物甲烷,而RC的单消化产生大量的二氧化碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信