Real-Time Parameter Identification and State of Charge Estimation of Electric Vehicle Batteries

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A. Maheshwari, S. Nageswari, R. Palanisamy, B. Karthikeyan, Mohamed Metwally Mahmoud, Daniel Eutyche Mbadjoun Wapet, Ali M. El-Rifaie, Ezzeddine Touti, Ahmed I. Omar
{"title":"Real-Time Parameter Identification and State of Charge Estimation of Electric Vehicle Batteries","authors":"A. Maheshwari,&nbsp;S. Nageswari,&nbsp;R. Palanisamy,&nbsp;B. Karthikeyan,&nbsp;Mohamed Metwally Mahmoud,&nbsp;Daniel Eutyche Mbadjoun Wapet,&nbsp;Ali M. El-Rifaie,&nbsp;Ezzeddine Touti,&nbsp;Ahmed I. Omar","doi":"10.1002/eng2.70346","DOIUrl":null,"url":null,"abstract":"<p>Accurate determination of the state of charge (SOC) is crucial for carrying out a range of battery management tasks. Meanwhile, for figuring out the SOC, it is crucial to determine the battery model parameters as they can vary based on the operating conditions. This paper proposes a novel algorithm called the variable forgetting factor recursive least squares algorithm (VFFRLS) to tackle this problem. Simulations are carried out on two different battery models, specifically one RC and two RC models. The fixed forgetting factor RLS (FFRLS) algorithm is implemented with two different forgetting factor (FF) values, while the VFFRLS method utilizes different initial FF values. From the results obtained from two RC-ECM, the MSE of VFFRLS (<i>λ</i><sub>0</sub> = 0.95) is about 2.45e-4, followed by VFFRLS (<i>λ</i><sub>0</sub> = 1) by 2.48e-4, FFRLS (<i>λ</i> = 0.95) by 3.53e-04, and FFRLS (<i>λ</i> = 1) by 0.002, confirming the accuracy of VFFRLS over FFRLS. The simulation results clearly show that the suggested VFFRLS technique outperforms the conventional RLS. In addition, the SOC estimation has been conducted using the optimized extended Kalman filter. The suggested battery model, parameter identification algorithm, and optimized filter have been tested and validated using real-time datasets from various sources, including the NASA online battery dataset, data collections of Panasonic 18650PF and LG 18650HG2 batteries. The verification process involved both constant load conditions and the dynamic drive profile of an electric vehicle.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70346","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate determination of the state of charge (SOC) is crucial for carrying out a range of battery management tasks. Meanwhile, for figuring out the SOC, it is crucial to determine the battery model parameters as they can vary based on the operating conditions. This paper proposes a novel algorithm called the variable forgetting factor recursive least squares algorithm (VFFRLS) to tackle this problem. Simulations are carried out on two different battery models, specifically one RC and two RC models. The fixed forgetting factor RLS (FFRLS) algorithm is implemented with two different forgetting factor (FF) values, while the VFFRLS method utilizes different initial FF values. From the results obtained from two RC-ECM, the MSE of VFFRLS (λ0 = 0.95) is about 2.45e-4, followed by VFFRLS (λ0 = 1) by 2.48e-4, FFRLS (λ = 0.95) by 3.53e-04, and FFRLS (λ = 1) by 0.002, confirming the accuracy of VFFRLS over FFRLS. The simulation results clearly show that the suggested VFFRLS technique outperforms the conventional RLS. In addition, the SOC estimation has been conducted using the optimized extended Kalman filter. The suggested battery model, parameter identification algorithm, and optimized filter have been tested and validated using real-time datasets from various sources, including the NASA online battery dataset, data collections of Panasonic 18650PF and LG 18650HG2 batteries. The verification process involved both constant load conditions and the dynamic drive profile of an electric vehicle.

Abstract Image

电动汽车电池的实时参数辨识与充电状态估计
准确确定充电状态(SOC)对于执行一系列电池管理任务至关重要。同时,由于电池的模型参数会随着运行条件的变化而变化,因此确定电池的SOC至关重要。本文提出了一种新的算法——可变遗忘因子递归最小二乘算法(VFFRLS)来解决这个问题。对两种不同的电池模型进行了仿真,分别是一种RC模型和两种RC模型。固定遗忘因子RLS (FFRLS)算法采用两种不同的遗忘因子(FF)值来实现,而VFFRLS方法采用不同的初始FF值来实现。从两个RC-ECM得到的结果来看,VFFRLS (λ0 = 0.95)的MSE约为2.45e-4,其次是VFFRLS (λ0 = 1)的MSE为2.48e-4, FFRLS (λ = 0.95)的MSE为3.53e-04, FFRLS (λ = 1)的MSE为0.002,证实了VFFRLS比FFRLS的精度。仿真结果清楚地表明,VFFRLS技术优于传统的RLS技术。此外,利用优化后的扩展卡尔曼滤波器对系统进行了SOC估计。所提出的电池模型、参数识别算法和优化滤波器已使用来自各种来源的实时数据集进行了测试和验证,包括NASA在线电池数据集、松下18650PF和LG 18650HG2电池的数据收集。验证过程包括恒定负载条件和电动汽车的动态驱动轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信