Effect of Core Structure on Cut Resistance of Covered Yarn Fabrics

IF 2.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Lin Zhong, Haijian Cao, Yixuan Xie, Ninghao Xu
{"title":"Effect of Core Structure on Cut Resistance of Covered Yarn Fabrics","authors":"Lin Zhong,&nbsp;Haijian Cao,&nbsp;Yixuan Xie,&nbsp;Ninghao Xu","doi":"10.1155/adv/5553206","DOIUrl":null,"url":null,"abstract":"<p>Anti-cut fabric is a type of personal safety protection material that can protect the human body from injuries caused by sharp objects, such as knives. It not only holds significant application value in military and police security sectors but is also widely used in civilian fields. Therefore, developing anti-cut fabrics that are both lightweight and possess excellent protective performance is of great importance in addressing the potential dangers posed by sharp tools. This study utilized ultrahigh molecular weight polyethylene (UHMWPE), aramid 1414 (Kevlar), stainless steel filament (SSF), and polyamide (PA) as raw materials to design and fabricate eight types of yarns and their plain–woven cut-resistant fabrics by modifying core yarn structures. Through a series of experiments, the cut-resistant properties of fabrics with different core yarn structures were systematically investigated, followed by comprehensive evaluations and theoretical analyses. Testing results revealed that the characteristic cutting forces of B<sub>P</sub>, B<sub>K</sub>, C<sub>P</sub>, and C<sub>K</sub> specimens were 1535.78 gf, 1687.61 gf, 1731.56 gf, and 1902.54 gf, respectively, meeting the A4 grade requirements of the ANSI/ISEA 105-2016 standard. In contrast, the A<sub>P</sub>, A<sub>K</sub>, D<sub>P</sub>, and D<sub>K</sub> specimens exhibited characteristic cutting forces of 1460.20 gf, 1494.56 gf, 962.63 gf, and 1347.57 gf, complying with the A3 grade specifications. The findings indicate that twisting a single core yarn component can effectively enhance the fabric’s cut resistance. This research provides both theoretical foundations and practical guidance for the design and development of high-performance cut-resistant textiles.</p>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"2025 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/adv/5553206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/adv/5553206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anti-cut fabric is a type of personal safety protection material that can protect the human body from injuries caused by sharp objects, such as knives. It not only holds significant application value in military and police security sectors but is also widely used in civilian fields. Therefore, developing anti-cut fabrics that are both lightweight and possess excellent protective performance is of great importance in addressing the potential dangers posed by sharp tools. This study utilized ultrahigh molecular weight polyethylene (UHMWPE), aramid 1414 (Kevlar), stainless steel filament (SSF), and polyamide (PA) as raw materials to design and fabricate eight types of yarns and their plain–woven cut-resistant fabrics by modifying core yarn structures. Through a series of experiments, the cut-resistant properties of fabrics with different core yarn structures were systematically investigated, followed by comprehensive evaluations and theoretical analyses. Testing results revealed that the characteristic cutting forces of BP, BK, CP, and CK specimens were 1535.78 gf, 1687.61 gf, 1731.56 gf, and 1902.54 gf, respectively, meeting the A4 grade requirements of the ANSI/ISEA 105-2016 standard. In contrast, the AP, AK, DP, and DK specimens exhibited characteristic cutting forces of 1460.20 gf, 1494.56 gf, 962.63 gf, and 1347.57 gf, complying with the A3 grade specifications. The findings indicate that twisting a single core yarn component can effectively enhance the fabric’s cut resistance. This research provides both theoretical foundations and practical guidance for the design and development of high-performance cut-resistant textiles.

Abstract Image

包芯结构对包纱织物抗剪性能的影响
防割伤织物是一种人身安全防护材料,可以保护人体免受刀具等尖锐物体的伤害。它不仅在军警安全领域具有重要的应用价值,而且在民用领域也有广泛的应用。因此,开发既轻便又具有优异防护性能的防割织物对于解决尖锐工具带来的潜在危险具有重要意义。本研究以超高分子量聚乙烯(UHMWPE)、芳纶1414 (Kevlar)、不锈钢长丝(SSF)和聚酰胺(PA)为原料,通过改变芯纱结构,设计制造了8种纱线及其平纹机抗割伤织物。通过一系列实验,系统研究了不同芯纱结构织物的抗割伤性能,并进行了综合评价和理论分析。测试结果表明,BP、BK、CP、CK试件的特征切削力分别为1535.78 gf、1687.61 gf、1731.56 gf、1902.54 gf,满足ANSI/ISEA 105-2016标准A4级要求。AP、AK、DP和DK试样的特征切削力分别为1460.20 gf、1494.56 gf、962.63 gf和1347.57 gf,符合A3级规范。结果表明,加捻单芯纱组分能有效提高织物的抗剪性能。本研究为高性能抗割伤纺织品的设计与开发提供了理论基础和实践指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信