A. D. Igoshkina, N. V. Mikina, A. V. Chulkov, E. I. Khoroshavina, M. V. Dubinin
{"title":"MKT-077 Suppresses the Functional Activity of Isolated Mouse Skeletal Muscle Mitochondria","authors":"A. D. Igoshkina, N. V. Mikina, A. V. Chulkov, E. I. Khoroshavina, M. V. Dubinin","doi":"10.1134/S1990747825700242","DOIUrl":null,"url":null,"abstract":"<p>This study demonstrates the effect of the rhodocyanine derivative MKT-077 on the function of isolated mitochondria from mouse skeletal muscle. MKT-077 was shown to dose-dependently inhibit mitochondrial respiration fueled by glutamate/malate (complex I substrates) or succinate (complex II substrate). This effect of MKT-077 was accompanied by a decrease in the membrane potential of organelles and was associated with both inhibition of the activity of complexes I and II of the mitochondrial respiratory chain and an increase in the proton permeability of the inner mitochondrial membrane. Molecular docking revealed sites in mitochondrial respiratory chain complex I that have an affinity for MKT-077 comparable to that of the specific inhibitor rotenone. At a concentration of 5 μM, MKT-077 caused a significant increase in hydrogen peroxide production by skeletal muscle mitochondria. However, 1 μM MKT-077 reduced the pro-oxidant effect of antimycin A. In addition, MKT-077 dose-dependently reduced the ability of mitochondria to uptake and retain calcium ions in the matrix. The article discusses the mechanisms of possible action of MKT-077 on the functioning of skeletal muscle mitochondria and their contribution to the side effects observed during the therapy of pathological conditions in vivo using this rhodocyanine derivative.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"19 3","pages":"293 - 302"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747825700242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study demonstrates the effect of the rhodocyanine derivative MKT-077 on the function of isolated mitochondria from mouse skeletal muscle. MKT-077 was shown to dose-dependently inhibit mitochondrial respiration fueled by glutamate/malate (complex I substrates) or succinate (complex II substrate). This effect of MKT-077 was accompanied by a decrease in the membrane potential of organelles and was associated with both inhibition of the activity of complexes I and II of the mitochondrial respiratory chain and an increase in the proton permeability of the inner mitochondrial membrane. Molecular docking revealed sites in mitochondrial respiratory chain complex I that have an affinity for MKT-077 comparable to that of the specific inhibitor rotenone. At a concentration of 5 μM, MKT-077 caused a significant increase in hydrogen peroxide production by skeletal muscle mitochondria. However, 1 μM MKT-077 reduced the pro-oxidant effect of antimycin A. In addition, MKT-077 dose-dependently reduced the ability of mitochondria to uptake and retain calcium ions in the matrix. The article discusses the mechanisms of possible action of MKT-077 on the functioning of skeletal muscle mitochondria and their contribution to the side effects observed during the therapy of pathological conditions in vivo using this rhodocyanine derivative.
期刊介绍:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.