{"title":"Evolution of anisotropic stiffness and damping ratio of soft clay by bidirectional step-amplitude cyclic triaxial tests","authors":"Zhong-Liang Zhang, Zhen-Dong Cui, Wen-Xiang Yan","doi":"10.1007/s11440-025-02620-z","DOIUrl":null,"url":null,"abstract":"<div><p>Soft clay is the primary soil type encountered in engineering construction in the eastern coastal regions of China. The deformation characteristics of soft clay are closely related to its inherent stiffness. Under the action of long-term geostatic stress and external load, the dynamic behavior and characteristics of soil in vertical and horizontal directions are different, i.e., anisotropy. In this study, the dynamic parameters of saturated soft clay samples were investigated through bidirectional dynamic step-amplitude cyclic triaxial experiments. The anisotropic stiffness evolution of soft clay over a wide strain range was analyzed, and the effects of different consolidation states on the development of dynamic shear modulus and damping ratio were also examined. Under the same confining pressure, the soft clay samples subjected to axial step-amplitude cyclic loading exhibited higher ultimate dynamic stress values in backbone curves compared to those under radial step-amplitude cyclic loading, while the obtained shear modulus showed the opposite trend. The anisotropic stiffness ratio of soft clay samples tended to increase with increasing confining pressure, with an average value of 1.25 in the range of 100–300 kPa. The shear modulus of the samples increased with increasing confining pressure and consolidation stress ratio but decreased with increasing overconsolidation ratio (OCR).</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 9","pages":"4411 - 4430"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-025-02620-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Soft clay is the primary soil type encountered in engineering construction in the eastern coastal regions of China. The deformation characteristics of soft clay are closely related to its inherent stiffness. Under the action of long-term geostatic stress and external load, the dynamic behavior and characteristics of soil in vertical and horizontal directions are different, i.e., anisotropy. In this study, the dynamic parameters of saturated soft clay samples were investigated through bidirectional dynamic step-amplitude cyclic triaxial experiments. The anisotropic stiffness evolution of soft clay over a wide strain range was analyzed, and the effects of different consolidation states on the development of dynamic shear modulus and damping ratio were also examined. Under the same confining pressure, the soft clay samples subjected to axial step-amplitude cyclic loading exhibited higher ultimate dynamic stress values in backbone curves compared to those under radial step-amplitude cyclic loading, while the obtained shear modulus showed the opposite trend. The anisotropic stiffness ratio of soft clay samples tended to increase with increasing confining pressure, with an average value of 1.25 in the range of 100–300 kPa. The shear modulus of the samples increased with increasing confining pressure and consolidation stress ratio but decreased with increasing overconsolidation ratio (OCR).
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.