{"title":"The Mixed Boundary Value Problems for the Steady Magnetohydrodynamics-Heat System with Joule Effects","authors":"Tujin Kim","doi":"10.1007/s00021-025-00968-6","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00968-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We are concerned with the steady Magnetohydrodynamics(MHD)-heat system with Joule effects under mixed boundary conditions. The boundary conditions for fluid may include the stick, pressure (or total pressure), vorticity, stress (or total stress) and friction types (Tresca slip, leak, one-sided leaks) boundary conditions together and for the electromagnetic field non-homogeneous mixed boundary conditions are given. The conditions for temperature may include non-homogeneous Dirichlet, Neumann and Robin conditions together. The viscosity, magnetic permeability, electrical conductivity, thermal conductivity and specific heat of the fluid depend on the temperature. The domain for fluid is not assumed to be simply connected. For the problem involving the static pressure and stress boundary conditions for fluid it is proved that if the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field and the data of problem are small enough, then there exists a solution. For the problem involving the total pressure and total stress boundary conditions for fluid, the existence of a solution is proved when the parameter for buoyancy effect is small in accordance with the data of problem, a datum concerned with non-homogeneous mixed boundary conditions for magnetic field is small, but without the auxiliary smallness of the other data of problem. In addition (Appendix), a very simple proof of the fact that vorticity quadratic form for vector fields with mixed boundary conditions is positive-definite, which has been known in a previous paper and is used in this paper, is given.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.