Sadaf Nazir, Larub Younis, Syed Ubaid Qurashi, Umar Manzoor, Saima Masood, Faheem A Shiekh, Shafquat Majeed
{"title":"Ionic-Liquid (IL) Mediated Microwave-Assisted Synthesis (ILMMAS): A New Synergistic Combination for Nanomaterial Synthesis","authors":"Sadaf Nazir, Larub Younis, Syed Ubaid Qurashi, Umar Manzoor, Saima Masood, Faheem A Shiekh, Shafquat Majeed","doi":"10.1007/s10904-025-03622-w","DOIUrl":null,"url":null,"abstract":"<div><p>The synergy between ionic liquids (ILs) and microwave (MW) irradiation has sparked a significant interest in material synthesis in general and nanomaterials in particular, revolutionizing the field of materials science. This review explores the fundamental properties and unique attributes of ILs, emphasizing their role as solvents, additives, templates, making them ideal for synthesizing materials, particularly nanomaterials like metals, metal oxides, and doped nanoparticles. The microwave assisted synthesis approach is discussed next vis-à-vis their advantages such as volumetric heating, reduced reaction times, enhanced yields and facile scalability. A new synthetic approach is also expounded on, where in very small quantity of an ionic liquid (IL), as an additive, can be coupled with low heating microwave solvents (non-polar solvents) and subjected to microwave-irradiation. The new strategy of <i>Ionic-liquid (IL) Mediated Microwave Synthesis (ILMMAS)</i>, can be particularly important in nanomaterial synthesis, as the non-polar solvents can be heated very quickly under microwave irradiation. This review emphasizes the crucial role of ILs in advancing nanomaterial synthesis and highlights their synergy with microwave irradiation for sustainable and efficient material synthesis processes.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":"35 7","pages":"5189 - 5212"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10904-025-03622-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The synergy between ionic liquids (ILs) and microwave (MW) irradiation has sparked a significant interest in material synthesis in general and nanomaterials in particular, revolutionizing the field of materials science. This review explores the fundamental properties and unique attributes of ILs, emphasizing their role as solvents, additives, templates, making them ideal for synthesizing materials, particularly nanomaterials like metals, metal oxides, and doped nanoparticles. The microwave assisted synthesis approach is discussed next vis-à-vis their advantages such as volumetric heating, reduced reaction times, enhanced yields and facile scalability. A new synthetic approach is also expounded on, where in very small quantity of an ionic liquid (IL), as an additive, can be coupled with low heating microwave solvents (non-polar solvents) and subjected to microwave-irradiation. The new strategy of Ionic-liquid (IL) Mediated Microwave Synthesis (ILMMAS), can be particularly important in nanomaterial synthesis, as the non-polar solvents can be heated very quickly under microwave irradiation. This review emphasizes the crucial role of ILs in advancing nanomaterial synthesis and highlights their synergy with microwave irradiation for sustainable and efficient material synthesis processes.
期刊介绍:
Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.