Existence and Uniqueness of Weak Solutions for the Generalized Stochastic Navier-Stokes-Voigt Equations

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Ankit Kumar, Hermenegildo Borges de Oliveira, Manil T. Mohan
{"title":"Existence and Uniqueness of Weak Solutions for the Generalized Stochastic Navier-Stokes-Voigt Equations","authors":"Ankit Kumar,&nbsp;Hermenegildo Borges de Oliveira,&nbsp;Manil T. Mohan","doi":"10.1007/s10955-025-03500-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we consider the incompressible generalized Navier-Stokes-Voigt equations in a bounded domain <span>\\(\\mathcal {O}\\subset \\mathbb {R}^d\\)</span>, <span>\\(d\\ge 2\\)</span>, driven by a multiplicative Gaussian noise. The considered momentum equation is given by: </p><div><div><span>$$\\begin{aligned} \\textrm{d}\\left( \\varvec{u} - \\kappa \\Delta \\varvec{u}\\right) = \\left[ \\varvec{f} +{\\operatorname {div}} \\left( -\\pi \\textbf{I}+\\nu |\\textbf{D}(\\varvec{u})|^{p-2}\\textbf{D}(\\varvec{u})-\\varvec{u}\\otimes \\varvec{u}\\right) \\right] \\textrm{d} t + \\Phi (\\varvec{u})\\textrm{dW}(t). \\end{aligned}$$</span></div></div><p>In the case of <span>\\(d=2,3\\)</span>, <span>\\(\\varvec{u}\\)</span> accounts for the velocity field, <span>\\(\\pi \\)</span> is the pressure, <span>\\(\\varvec{f}\\)</span> is a body force and the final term represents the stochastic forces. Here, <span>\\(\\kappa \\)</span> and <span>\\(\\nu \\)</span> are given positive constants that account for the kinematic viscosity and relaxation time, and the power-law index <i>p</i> is another constant (assumed <span>\\(p&gt;1\\)</span>) that characterizes the flow. We use the usual notation <span>\\(\\textbf{I}\\)</span> for the unit tensor and <span>\\(\\textbf{D}(\\varvec{u}):=\\frac{1}{2}\\left( \\nabla \\varvec{u} + (\\nabla \\varvec{u})^{\\top }\\right) \\)</span> for the symmetric part of velocity gradient. For <span>\\(p\\in \\big (\\frac{2d}{d+2},\\infty \\big )\\)</span>, we first prove the existence of a <i>martingale solution</i>. Then we show the <i>pathwise uniqueness of solutions</i>. We employ the classical <i>Yamada-Watanabe theorem</i> to ensure the existence of a unique <i>probabilistic strong solution</i>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 9","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03500-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider the incompressible generalized Navier-Stokes-Voigt equations in a bounded domain \(\mathcal {O}\subset \mathbb {R}^d\), \(d\ge 2\), driven by a multiplicative Gaussian noise. The considered momentum equation is given by:

$$\begin{aligned} \textrm{d}\left( \varvec{u} - \kappa \Delta \varvec{u}\right) = \left[ \varvec{f} +{\operatorname {div}} \left( -\pi \textbf{I}+\nu |\textbf{D}(\varvec{u})|^{p-2}\textbf{D}(\varvec{u})-\varvec{u}\otimes \varvec{u}\right) \right] \textrm{d} t + \Phi (\varvec{u})\textrm{dW}(t). \end{aligned}$$

In the case of \(d=2,3\), \(\varvec{u}\) accounts for the velocity field, \(\pi \) is the pressure, \(\varvec{f}\) is a body force and the final term represents the stochastic forces. Here, \(\kappa \) and \(\nu \) are given positive constants that account for the kinematic viscosity and relaxation time, and the power-law index p is another constant (assumed \(p>1\)) that characterizes the flow. We use the usual notation \(\textbf{I}\) for the unit tensor and \(\textbf{D}(\varvec{u}):=\frac{1}{2}\left( \nabla \varvec{u} + (\nabla \varvec{u})^{\top }\right) \) for the symmetric part of velocity gradient. For \(p\in \big (\frac{2d}{d+2},\infty \big )\), we first prove the existence of a martingale solution. Then we show the pathwise uniqueness of solutions. We employ the classical Yamada-Watanabe theorem to ensure the existence of a unique probabilistic strong solution.

广义随机Navier-Stokes-Voigt方程弱解的存在唯一性
在这项工作中,我们考虑了不可压缩广义Navier-Stokes-Voigt方程在有界域\(\mathcal {O}\subset \mathbb {R}^d\), \(d\ge 2\)中,由一个乘性高斯噪声驱动。所考虑的动量方程如下:$$\begin{aligned} \textrm{d}\left( \varvec{u} - \kappa \Delta \varvec{u}\right) = \left[ \varvec{f} +{\operatorname {div}} \left( -\pi \textbf{I}+\nu |\textbf{D}(\varvec{u})|^{p-2}\textbf{D}(\varvec{u})-\varvec{u}\otimes \varvec{u}\right) \right] \textrm{d} t + \Phi (\varvec{u})\textrm{dW}(t). \end{aligned}$$在\(d=2,3\)的情况下,\(\varvec{u}\)表示速度场,\(\pi \)表示压力,\(\varvec{f}\)表示物体力,最后一项表示随机力。在这里,\(\kappa \)和\(\nu \)是正常数,用于解释运动粘度和松弛时间,幂律指数p是表征流动的另一个常数(假设\(p>1\))。我们使用通常的符号\(\textbf{I}\)表示单位张量,\(\textbf{D}(\varvec{u}):=\frac{1}{2}\left( \nabla \varvec{u} + (\nabla \varvec{u})^{\top }\right) \)表示速度梯度的对称部分。对于\(p\in \big (\frac{2d}{d+2},\infty \big )\),首先证明了一个鞅解的存在性。然后证明了解的路径唯一性。我们利用经典的Yamada-Watanabe定理来保证唯一概率强解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信