The Effect of Number of Fins per Transistor on the TID Response of 12LP FinFET Technology

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Trace Wallace;Nathaniel A. Dodds;Aldo I. Vidana;R. Nathan Nowlin;B. Dodd;H. J. Barnaby;M. Spear;J. Neuendank;Jeffrey S. Kauppila;Timothy D. Haeffner;Grant D. Poe;Sean T. Vibbert;Lloyd W. Massengill;J. L. Taggart;B. Foran;Stefano Bonaldo
{"title":"The Effect of Number of Fins per Transistor on the TID Response of 12LP FinFET Technology","authors":"Trace Wallace;Nathaniel A. Dodds;Aldo I. Vidana;R. Nathan Nowlin;B. Dodd;H. J. Barnaby;M. Spear;J. Neuendank;Jeffrey S. Kauppila;Timothy D. Haeffner;Grant D. Poe;Sean T. Vibbert;Lloyd W. Massengill;J. L. Taggart;B. Foran;Stefano Bonaldo","doi":"10.1109/TNS.2025.3589259","DOIUrl":null,"url":null,"abstract":"This article presents an analysis of the total ionizing dose (TID) response of n-channel transistors in the 12LP fin-based field effect transistor (FinFET) technology, with a focus on the impact of fin count per transistor. Previous studies, such as those by Vidana (2023), have shown increased <sc>off</small>-state current (<inline-formula> <tex-math>$I_{\\text {DS}-\\text {off}}$ </tex-math></inline-formula>) in n-channel FinFETs caused by charge buildup in shallow trench isolation (STI) oxides. However, these trends vary based on the number of fins used in the device. This work introduces a physics-based data-driven model supported by TCAD simulations to explain the fin count dependence on TID response. The model identifies variability in charge trapping in different STI regions, specifically highlighting the role of silicon nitride layers in mitigating leakage in devices with two or fewer fins. This research not only corroborates prior findings but also provides new insights into the electrostatic sensitivities unique to nanoscale FinFETs, offering a better understanding of TID effects and potential device hardening strategies.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 8","pages":"2317-2323"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11095991/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an analysis of the total ionizing dose (TID) response of n-channel transistors in the 12LP fin-based field effect transistor (FinFET) technology, with a focus on the impact of fin count per transistor. Previous studies, such as those by Vidana (2023), have shown increased off-state current ( $I_{\text {DS}-\text {off}}$ ) in n-channel FinFETs caused by charge buildup in shallow trench isolation (STI) oxides. However, these trends vary based on the number of fins used in the device. This work introduces a physics-based data-driven model supported by TCAD simulations to explain the fin count dependence on TID response. The model identifies variability in charge trapping in different STI regions, specifically highlighting the role of silicon nitride layers in mitigating leakage in devices with two or fewer fins. This research not only corroborates prior findings but also provides new insights into the electrostatic sensitivities unique to nanoscale FinFETs, offering a better understanding of TID effects and potential device hardening strategies.
每晶体管翅片数对12LP FinFET技术TID响应的影响
本文分析了基于12LP翅片的场效应晶体管(FinFET)技术中n沟道晶体管的总电离剂量(TID)响应,重点讨论了每个晶体管的翅片数的影响。先前的研究,如Vidana(2023)的研究表明,由于浅沟槽隔离(STI)氧化物中的电荷积聚,n沟道finfet中的断开状态电流($I_{\text {DS}-\text {off}}}$)增加。然而,这些趋势根据设备中使用的鳍片数量而变化。这项工作引入了一个基于物理的数据驱动模型,该模型由TCAD模拟支持,以解释鳍数对TID响应的依赖。该模型确定了不同STI区域电荷捕获的可变性,特别强调了氮化硅层在减少两个或更少鳍片器件泄漏方面的作用。这项研究不仅证实了先前的发现,而且为纳米级finfet独特的静电灵敏度提供了新的见解,为更好地理解TID效应和潜在的器件硬化策略提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nuclear Science
IEEE Transactions on Nuclear Science 工程技术-工程:电子与电气
CiteScore
3.70
自引率
27.80%
发文量
314
审稿时长
6.2 months
期刊介绍: The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years. The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信