Banach algebras associated to twisted étale groupoids: Inverse semigroup disintegration and representations on Lp-spaces

IF 1.6 2区 数学 Q1 MATHEMATICS
Krzysztof Bardadyn, Bartosz Kwaśniewski, Andrew McKee
{"title":"Banach algebras associated to twisted étale groupoids: Inverse semigroup disintegration and representations on Lp-spaces","authors":"Krzysztof Bardadyn,&nbsp;Bartosz Kwaśniewski,&nbsp;Andrew McKee","doi":"10.1016/j.jfa.2025.111163","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce Banach algebras associated to twisted étale groupoids <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></math></span> and to twisted inverse semigroup actions. This provides a unifying framework for numerous recent papers on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-operator algebras and the theory of groupoid <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras. We prove disintegrations theorems that allow to study Banach algebras associated to <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></math></span> as universal Banach algebras generated by <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> and a twisted inverse semigroup <em>S</em> of partial isometries subject to some relations. They work best when the target of a representation is a dual Banach algebra. For representations on dual Banach spaces, they allow to extend representations to twisted Borel convolution algebras, which is crucial when the groupoid is non-Hausdorff.</div><div>We establish fundamental norm estimates and hierarchy for full and reduced <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-operator algebras for <span><math><mo>(</mo><mi>G</mi><mo>,</mo><mi>L</mi><mo>)</mo></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span>, whose special cases have been studied recently by Gardella–Lupini, Choi–Gardella–Thiel and Hetland–Ortega. We show that in the constructions of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-analogues of Cuntz or graph algebras, by Phillips and Cortiñas–Rodríguez, the use of spatial partial isometries is not an assumption, in fact it is forced by the relations. We also introduce tight inverse semigroup Banach algebras that cover ample groupoid Banach algebras, and discuss Banach algebras associated to directed graphs.</div><div>Our results cover non-Hausdorff étale groupoids and both real and complex algebras. Some of the results are new already for complex <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111163"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003453","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Banach algebras associated to twisted étale groupoids (G,L) and to twisted inverse semigroup actions. This provides a unifying framework for numerous recent papers on Lp-operator algebras and the theory of groupoid C-algebras. We prove disintegrations theorems that allow to study Banach algebras associated to (G,L) as universal Banach algebras generated by C0(X) and a twisted inverse semigroup S of partial isometries subject to some relations. They work best when the target of a representation is a dual Banach algebra. For representations on dual Banach spaces, they allow to extend representations to twisted Borel convolution algebras, which is crucial when the groupoid is non-Hausdorff.
We establish fundamental norm estimates and hierarchy for full and reduced Lp-operator algebras for (G,L) and p[1,], whose special cases have been studied recently by Gardella–Lupini, Choi–Gardella–Thiel and Hetland–Ortega. We show that in the constructions of Lp-analogues of Cuntz or graph algebras, by Phillips and Cortiñas–Rodríguez, the use of spatial partial isometries is not an assumption, in fact it is forced by the relations. We also introduce tight inverse semigroup Banach algebras that cover ample groupoid Banach algebras, and discuss Banach algebras associated to directed graphs.
Our results cover non-Hausdorff étale groupoids and both real and complex algebras. Some of the results are new already for complex C-algebras.
与扭曲的可变群类群相关的Banach代数:逆半群分解和在lp空间上的表示
我们引入了与扭曲的可变群(G,L)和扭曲逆半群作用相关的Banach代数。这为最近许多关于lp算子代数和类群C -代数理论的论文提供了一个统一的框架。我们证明了可将(G,L)相关的Banach代数研究为由C0(X)和部分等距的扭曲逆半群S生成的泛Banach代数的分解定理。当表示的目标是对偶巴拿赫代数时,它们最有效。对于对偶Banach空间上的表示,它们允许将表示扩展到扭曲Borel卷积代数,这在群群是非hausdorff时是至关重要的。我们建立了(G,L)和p∈[1,∞]的满算子和约化算子代数的基本范数估计和层次,它们的特殊情况最近已经被Gardella-Lupini, Choi-Gardella-Thiel和Hetland-Ortega研究。我们表明,在由Phillips和Cortiñas-Rodríguez构造的Cuntz或图代数的lp类似物中,空间部分等距的使用不是一个假设,实际上它是由关系所强迫的。我们还引入了紧逆半群Banach代数,涵盖了大量的类群Banach代数,并讨论了与有向图相关的Banach代数。我们的结果涵盖了非hausdorff变群和实代数和复代数。对于复C -代数,有些结果已经是新的了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信