{"title":"A Denjoy-Wolff theorem for bounded symmetric domains","authors":"Cho-Ho Chu","doi":"10.1016/j.jfa.2025.111161","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>D</em> be a bounded symmetric domain of finite rank, realised as the open unit ball of a complex Banach space, which can be infinite dimensional. Given a fixed-point free compact holomorphic map <span><math><mi>f</mi><mo>:</mo><mi>D</mi><mo>⟶</mo><mi>D</mi></math></span>, with iterates<span><span><span><math><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><munder><munder><mrow><mi>f</mi><mo>∘</mo><mo>⋯</mo><mo>∘</mo><mi>f</mi></mrow><mo>︸</mo></munder><mrow><mtext>n</mtext><mtext>-times</mtext></mrow></munder><mo>,</mo></math></span></span></span> such that the limit points of one orbit <span><math><mo>{</mo><mi>a</mi><mo>,</mo><mi>f</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>a</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>}</mo></math></span> in an <em>f</em>-invariant horoball of unit hororadius lie in the extended Shilov boundary of <em>D</em>, we show that there is a holomorphic boundary component Γ of <em>D</em>, with closure <span><math><mover><mrow><mi>Γ</mi></mrow><mo>‾</mo></mover></math></span>, such that <span><math><mi>ℓ</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>⊂</mo><mover><mrow><mi>Γ</mi></mrow><mo>‾</mo></mover></math></span> for <em>all</em> subsequential limits <span><math><mi>ℓ</mi><mo>=</mo><msub><mrow><mi>lim</mi></mrow><mrow><mi>k</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><msup><mrow><mi>f</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></math></span> of <span><math><mo>(</mo><msup><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>.</div><div>This generalises the Denjoy-Wolff theorem for a fixed-point free holomorphic self-map <em>f</em> on the disc <span><math><mi>D</mi><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi>C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo><</mo><mn>1</mn><mo>}</mo></math></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 12","pages":"Article 111161"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500343X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let D be a bounded symmetric domain of finite rank, realised as the open unit ball of a complex Banach space, which can be infinite dimensional. Given a fixed-point free compact holomorphic map , with iterates such that the limit points of one orbit in an f-invariant horoball of unit hororadius lie in the extended Shilov boundary of D, we show that there is a holomorphic boundary component Γ of D, with closure , such that for all subsequential limits of .
This generalises the Denjoy-Wolff theorem for a fixed-point free holomorphic self-map f on the disc .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis