Spin-polarized DFT investigation of half-metallic ferromagnetic europium-based cubic perovskites EuMO3 (M = Hf, Zr) for spintronic applications

IF 3 Q2 PHYSICS, CONDENSED MATTER
Merieme Benaadad
{"title":"Spin-polarized DFT investigation of half-metallic ferromagnetic europium-based cubic perovskites EuMO3 (M = Hf, Zr) for spintronic applications","authors":"Merieme Benaadad","doi":"10.1016/j.micrna.2025.208306","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite oxides are increasingly explored in the field of spintronics due to their ability to exhibit strong magnetic interactions and high degrees of spin polarization. The current study comprehensively investigates the structural configuration, magnetic behavior, electronic characteristics, mechanical stability, and thermal performance of EuMO<sub>3</sub> (M = Hf, Zr) perovskite using density functional theory. Structural optimization, tolerance factor analysis, and elastic stability criteria confirm the stability of both compounds in the <span><math><mrow><mi>P</mi><mi>m</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span> space group. The calculated positive elastic constants and anisotropy in elastic moduli reveal mechanical robustness, with EuZrO<sub>3</sub> exhibiting ductile behavior and EuHfO<sub>3</sub> demonstrating brittleness. Band structure and spin-polarized density of states analyses indicate ferromagnetic half-metallic behavior, attributed to the partially filled Eu-4f states in the spin-up channel. The total magnetic moment of ∼7 μB per formula unit aligns with the Eu<sup>2+</sup> 4f<sup>7</sup> configuration. High Curie temperatures (∼1290 K) suggest magnetic stability well above room temperature. Thermal properties, including Debye temperature, specific heat, and thermal expansion coefficient, were also examined under varying temperature and pressure. These results demonstrate that EuMO<sub>3</sub> compounds are promising candidates for future spintronic and high-temperature device applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208306"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite oxides are increasingly explored in the field of spintronics due to their ability to exhibit strong magnetic interactions and high degrees of spin polarization. The current study comprehensively investigates the structural configuration, magnetic behavior, electronic characteristics, mechanical stability, and thermal performance of EuMO3 (M = Hf, Zr) perovskite using density functional theory. Structural optimization, tolerance factor analysis, and elastic stability criteria confirm the stability of both compounds in the Pm3m space group. The calculated positive elastic constants and anisotropy in elastic moduli reveal mechanical robustness, with EuZrO3 exhibiting ductile behavior and EuHfO3 demonstrating brittleness. Band structure and spin-polarized density of states analyses indicate ferromagnetic half-metallic behavior, attributed to the partially filled Eu-4f states in the spin-up channel. The total magnetic moment of ∼7 μB per formula unit aligns with the Eu2+ 4f7 configuration. High Curie temperatures (∼1290 K) suggest magnetic stability well above room temperature. Thermal properties, including Debye temperature, specific heat, and thermal expansion coefficient, were also examined under varying temperature and pressure. These results demonstrate that EuMO3 compounds are promising candidates for future spintronic and high-temperature device applications.
半金属铁磁铕基立方钙钛矿EuMO3 (M = Hf, Zr)自旋极化DFT研究
钙钛矿氧化物由于具有强磁相互作用和高度自旋极化的特性,在自旋电子学领域得到了越来越多的研究。本研究利用密度泛函理论全面研究了EuMO3 (M = Hf, Zr)钙钛矿的结构构型、磁性行为、电子特性、机械稳定性和热性能。结构优化、容差因子分析、弹性稳定性判据证实这两种化合物在Pm3 - m空间群中的稳定性。计算得到的正弹性常数和弹性模量的各向异性显示出力学鲁棒性,EuZrO3表现出延展性,而EuHfO3表现出脆性。带结构和态的自旋极化密度分析表明,由于自旋向上通道中部分填充了Eu-4f态,导致了铁磁性半金属行为。每个分子式单位的总磁矩为~ 7 μB,与Eu2+ 4f7结构一致。高居里温度(~ 1290k)表明磁稳定性远高于室温。热性能,包括德拜温度、比热和热膨胀系数,也在不同的温度和压力下进行了测试。这些结果表明,EuMO3化合物是未来自旋电子和高温器件应用的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信