Computational analysis of GeSn nanosheet for atmospheric gas sensing: A first-principles approach

IF 3 Q2 PHYSICS, CONDENSED MATTER
Soha Hakeem , Ashir Saeed , Saleh S. Alarfaji , Tahir iqbal , Ashfaq Ahmad khan , Muhammad Isa Khan
{"title":"Computational analysis of GeSn nanosheet for atmospheric gas sensing: A first-principles approach","authors":"Soha Hakeem ,&nbsp;Ashir Saeed ,&nbsp;Saleh S. Alarfaji ,&nbsp;Tahir iqbal ,&nbsp;Ashfaq Ahmad khan ,&nbsp;Muhammad Isa Khan","doi":"10.1016/j.micrna.2025.208307","DOIUrl":null,"url":null,"abstract":"<div><div>Rising industrial activity releases toxic gases, demanding sensitive trace-level sensors. In this study, the sensing potential of a germanium-tin (GeSn) monolayer is investigated through first-principles density functional theory (DFT) calculations. The adsorption behavior of six hazardous gases, NO, NH<sub>3</sub>, CO, CO<sub>2</sub>, H<sub>2</sub>S, and SO<sub>2,</sub> on the GeSn surface was systematically analyzed. The results reveal that while four of the gases adsorb via physisorption, NO and NH<sub>3</sub> exhibit chemisorption, indicating a stronger interaction with the GeSn surface. All the configurations were further examined through Hirshfeld charge analysis, work function variation, density of states (DOS), and recovery time evaluation. Charge transfer analyses show that the intrinsic dipole moments of the GeSn monolayer influence gas adsorption, with SO<sub>2</sub> and CO acting as electron donors. Notably, SO<sub>2</sub> adsorption leads to pronounced changes in both work function and electronic structure, suggesting a significant modulation of the sensor's electrical response. Overall, the findings underscore the potential of the GeSn monolayer as a highly sensitive and selective sensing material, particularly for the detection of SO<sub>2</sub> gas.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"207 ","pages":"Article 208307"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Rising industrial activity releases toxic gases, demanding sensitive trace-level sensors. In this study, the sensing potential of a germanium-tin (GeSn) monolayer is investigated through first-principles density functional theory (DFT) calculations. The adsorption behavior of six hazardous gases, NO, NH3, CO, CO2, H2S, and SO2, on the GeSn surface was systematically analyzed. The results reveal that while four of the gases adsorb via physisorption, NO and NH3 exhibit chemisorption, indicating a stronger interaction with the GeSn surface. All the configurations were further examined through Hirshfeld charge analysis, work function variation, density of states (DOS), and recovery time evaluation. Charge transfer analyses show that the intrinsic dipole moments of the GeSn monolayer influence gas adsorption, with SO2 and CO acting as electron donors. Notably, SO2 adsorption leads to pronounced changes in both work function and electronic structure, suggesting a significant modulation of the sensor's electrical response. Overall, the findings underscore the potential of the GeSn monolayer as a highly sensitive and selective sensing material, particularly for the detection of SO2 gas.
大气气体传感用GeSn纳米片的计算分析:第一性原理方法
不断增加的工业活动释放有毒气体,需要灵敏的痕量传感器。在本研究中,通过第一性原理密度泛函理论(DFT)计算研究了锗锡(GeSn)单层的传感电位。系统分析了GeSn表面对NO、NH3、CO、CO2、H2S和SO2六种有害气体的吸附行为。结果表明,四种气体均以物理吸附方式吸附,而NO和NH3表现为化学吸附,表明与GeSn表面的相互作用更强。通过Hirshfeld电荷分析、功函数变化、态密度(DOS)和恢复时间评估进一步考察了所有构型。电荷转移分析表明,GeSn单层的本征偶极矩影响气体吸附,SO2和CO作为电子给体。值得注意的是,SO2吸附导致功函数和电子结构的显著变化,表明传感器的电响应发生了显著的调制。总的来说,这些发现强调了GeSn单层作为一种高灵敏度和选择性传感材料的潜力,特别是在检测二氧化硫气体方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信