{"title":"Smoothing quantile regression averaging: A new approach to probabilistic forecasting of electricity prices","authors":"Bartosz Uniejewski","doi":"10.1016/j.jcomm.2025.100501","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate short-term price forecasting is essential for daily operations in electricity markets. This article introduces a new method, called Smoothing Quantile Regression (SQR) Averaging, that improves upon well-performing probabilistic forecasting schemes. To demonstrate its utility, a comprehensive study is conducted on two electricity markets, including recent data covering the COVID-19 pandemic and the Russian invasion of Ukraine. The performance of SQR Averaging is evaluated both in terms of reliability and sharpness measures, and economic benefits from a trading strategy. The latter utilizes battery storage and sets limit orders using selected quantiles of the predictive distribution. SQR Averaging leads to profit increases compared to the benchmark strategy based solely on point forecasts. This is strong evidence for the practical value of using probabilistic forecasts in day-ahead power trading, even in the face of the COVID-19 pandemic and geopolitical disruptions.</div></div>","PeriodicalId":45111,"journal":{"name":"Journal of Commodity Markets","volume":"39 ","pages":"Article 100501"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commodity Markets","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405851325000455","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate short-term price forecasting is essential for daily operations in electricity markets. This article introduces a new method, called Smoothing Quantile Regression (SQR) Averaging, that improves upon well-performing probabilistic forecasting schemes. To demonstrate its utility, a comprehensive study is conducted on two electricity markets, including recent data covering the COVID-19 pandemic and the Russian invasion of Ukraine. The performance of SQR Averaging is evaluated both in terms of reliability and sharpness measures, and economic benefits from a trading strategy. The latter utilizes battery storage and sets limit orders using selected quantiles of the predictive distribution. SQR Averaging leads to profit increases compared to the benchmark strategy based solely on point forecasts. This is strong evidence for the practical value of using probabilistic forecasts in day-ahead power trading, even in the face of the COVID-19 pandemic and geopolitical disruptions.
期刊介绍:
The purpose of the journal is also to stimulate international dialog among academics, industry participants, traders, investors, and policymakers with mutual interests in commodity markets. The mandate for the journal is to present ongoing work within commodity economics and finance. Topics can be related to financialization of commodity markets; pricing, hedging, and risk analysis of commodity derivatives; risk premia in commodity markets; real option analysis for commodity project investment and production; portfolio allocation including commodities; forecasting in commodity markets; corporate finance for commodity-exposed corporations; econometric/statistical analysis of commodity markets; organization of commodity markets; regulation of commodity markets; local and global commodity trading; and commodity supply chains. Commodity markets in this context are energy markets (including renewables), metal markets, mineral markets, agricultural markets, livestock and fish markets, markets for weather derivatives, emission markets, shipping markets, water, and related markets. This interdisciplinary and trans-disciplinary journal will cover all commodity markets and is thus relevant for a broad audience. Commodity markets are not only of academic interest but also highly relevant for many practitioners, including asset managers, industrial managers, investment bankers, risk managers, and also policymakers in governments, central banks, and supranational institutions.