High-order linearly implicit energy-stable schemes for two-dimensional Navier–Stokes equations in vorticity-velocity formulation

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Lei Zhao , Dong Liang , Zhiyue Zhang
{"title":"High-order linearly implicit energy-stable schemes for two-dimensional Navier–Stokes equations in vorticity-velocity formulation","authors":"Lei Zhao ,&nbsp;Dong Liang ,&nbsp;Zhiyue Zhang","doi":"10.1016/j.camwa.2025.08.010","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we propose a novel class of high-order, linearly implicit, and energy-stable Runge-Kutta methods for the two-dimensional Navier-Stokes equations in vorticity-velocity formulation, based on the scalar auxiliary variable approach and the Fourier-Galerkin method. Compared to traditional Runge-Kutta methods, the proposed schemes achieve high-order accuracy with a linearly implicit structure at each stage, ensuring that the numerical solutions adhere to the dissipation laws associated with modified enstrophy. To address the nonlinear terms explicitly, the same-stage integrating factor Runge-Kutta methods are employed in the prediction step. We also implement a 2/3 de-aliasing technique for the nonlinear terms to reduce the aliasing error. Furthermore, the integration terms in our numerical scheme are exact due to the Fourier-Galerkin method. Numerical experiments are presented to verify the stability and efficiency of the proposed scheme.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"196 ","pages":"Pages 338-354"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003372","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a novel class of high-order, linearly implicit, and energy-stable Runge-Kutta methods for the two-dimensional Navier-Stokes equations in vorticity-velocity formulation, based on the scalar auxiliary variable approach and the Fourier-Galerkin method. Compared to traditional Runge-Kutta methods, the proposed schemes achieve high-order accuracy with a linearly implicit structure at each stage, ensuring that the numerical solutions adhere to the dissipation laws associated with modified enstrophy. To address the nonlinear terms explicitly, the same-stage integrating factor Runge-Kutta methods are employed in the prediction step. We also implement a 2/3 de-aliasing technique for the nonlinear terms to reduce the aliasing error. Furthermore, the integration terms in our numerical scheme are exact due to the Fourier-Galerkin method. Numerical experiments are presented to verify the stability and efficiency of the proposed scheme.
涡速-速度型二维Navier-Stokes方程的高阶线性隐式能量稳定格式
在这项工作中,我们提出了一类新的高阶、线性隐式和能量稳定的基于标量辅助变量方法和傅立叶-伽辽金方法的涡速-速度形式的二维Navier-Stokes方程的Runge-Kutta方法。与传统的龙格-库塔方法相比,所提出的格式在每个阶段都具有线性隐式结构,保证了数值解遵循修正熵相关的耗散规律,从而实现了高阶精度。为了明确地处理非线性项,在预测步骤中采用了同阶积分因子龙格-库塔方法。我们还对非线性项实现了2/3去混叠技术,以减小混叠误差。此外,由于傅里叶-伽辽金方法,积分项在数值格式中是精确的。通过数值实验验证了该方法的稳定性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信