The urban heat Island effect: A review on predictive approaches using artificial intelligence models

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Ali Najah Ahmed , Nouar AlDahoul , Nurhanani A. Aziz , Y.F. Huang , Mohsen Sherif , Ahmed El-Shafie
{"title":"The urban heat Island effect: A review on predictive approaches using artificial intelligence models","authors":"Ali Najah Ahmed ,&nbsp;Nouar AlDahoul ,&nbsp;Nurhanani A. Aziz ,&nbsp;Y.F. Huang ,&nbsp;Mohsen Sherif ,&nbsp;Ahmed El-Shafie","doi":"10.1016/j.cacint.2025.100234","DOIUrl":null,"url":null,"abstract":"<div><div>With the global population now exceeding 8 billion and 4.5 billion of whom residing in urban areas, rapid urbanization has contributed to a range of environmental and ecological challenges, notably the Urban Heat Island (UHI) effect. According to statistical data, the ten hottest years on record occurred between 2013 and 2022, underscoring the urgency of addressing urban heat issues. This study provides a comprehensive review of research on the UHI effect, analysing and classifying studies that utilize a variety of input–output datasets. It also examines predictive methods used to estimate UHI intensity, categorizing them into conventional machine learning (ML) algorithms, deep learning (DL) models, and hybrid approaches. While conventional ML algorithms remain widely used, DL and hybrid models have shown superior performance in predictive accuracy. This review aims to enhance understanding of recent advancements in UHI prediction techniques, identify limitations in current methodologies, and propose directions for future research.</div></div>","PeriodicalId":52395,"journal":{"name":"City and Environment Interactions","volume":"28 ","pages":"Article 100234"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"City and Environment Interactions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590252025000480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With the global population now exceeding 8 billion and 4.5 billion of whom residing in urban areas, rapid urbanization has contributed to a range of environmental and ecological challenges, notably the Urban Heat Island (UHI) effect. According to statistical data, the ten hottest years on record occurred between 2013 and 2022, underscoring the urgency of addressing urban heat issues. This study provides a comprehensive review of research on the UHI effect, analysing and classifying studies that utilize a variety of input–output datasets. It also examines predictive methods used to estimate UHI intensity, categorizing them into conventional machine learning (ML) algorithms, deep learning (DL) models, and hybrid approaches. While conventional ML algorithms remain widely used, DL and hybrid models have shown superior performance in predictive accuracy. This review aims to enhance understanding of recent advancements in UHI prediction techniques, identify limitations in current methodologies, and propose directions for future research.
城市热岛效应:人工智能模型预测方法综述
随着全球人口超过80亿,其中45亿人居住在城市地区,快速城市化带来了一系列环境和生态挑战,特别是城市热岛效应。统计数据显示,有记录以来最热的10年发生在2013年至2022年之间,凸显了解决城市高温问题的紧迫性。本研究全面回顾了关于城市热岛效应的研究,对利用各种投入产出数据集的研究进行了分析和分类。它还研究了用于估计UHI强度的预测方法,将它们分为传统的机器学习(ML)算法、深度学习(DL)模型和混合方法。虽然传统的机器学习算法仍然被广泛使用,但深度学习和混合模型在预测准确性方面表现出优异的性能。本综述旨在加强对热岛预测技术最新进展的理解,确定当前方法的局限性,并提出未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
City and Environment Interactions
City and Environment Interactions Social Sciences-Urban Studies
CiteScore
6.00
自引率
3.00%
发文量
15
审稿时长
27 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信