Effect of mechanical recycling and virgin PBR addition on the properties of ABS recovered from WEEE: A multi-technique characterization

Anna Lesiak , Luc Vincent , Joost Schollaert , Lamiae Safou , Francois Orange , Sophie Pagnotta , Nicolas Sbirrazzuoli , Nathanael Guigo
{"title":"Effect of mechanical recycling and virgin PBR addition on the properties of ABS recovered from WEEE: A multi-technique characterization","authors":"Anna Lesiak ,&nbsp;Luc Vincent ,&nbsp;Joost Schollaert ,&nbsp;Lamiae Safou ,&nbsp;Francois Orange ,&nbsp;Sophie Pagnotta ,&nbsp;Nicolas Sbirrazzuoli ,&nbsp;Nathanael Guigo","doi":"10.1016/j.wmb.2025.100238","DOIUrl":null,"url":null,"abstract":"<div><div>With the growing use of electrical and electronic devices, the volume of waste electrical and electronic equipment (WEEE) continues to increase, posing a major environmental and recycling challenge. Acrylonitrile-butadiene-styrene (ABS) is one of the most common thermoplastics found in WEEE, its recovery is complicated by contamination, heterogeneity, and degradation. While mechanical recycling of ABS is widely practiced, the impact of specific processing steps on the chemical and physical properties of the recyclate remains insufficiently explored. This study investigates the effect of shredding and extrusion, as well as the integration of virgin polybutadiene rubber (PBR), on the morphology, chemical structure, and thermal stability of ABS-rich WEEE recyclates. A multi-analytical approach, combining Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), inductively coupled plasma optical emission spectroscopy (ICP-OES) and thermal analysis − was employed to fully characterize the materials. Our findings show that extrusion improves sample homogeneity and removes some contaminants (e.g., Ba, Cl), leading to a significant increase in thermal stability (T<sub>10</sub>% +30 °C). The addition of virgin PBR contributes to enhanced internal cohesion and a fibrous morphology. This work provides a robust methodology for distinguishing processing-related changes from compositional variability in real-world recycled plastics. The approach can support the development of advanced processing strategies for polymer waste streams.</div></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"3 3","pages":"Article 100238"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750725000677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing use of electrical and electronic devices, the volume of waste electrical and electronic equipment (WEEE) continues to increase, posing a major environmental and recycling challenge. Acrylonitrile-butadiene-styrene (ABS) is one of the most common thermoplastics found in WEEE, its recovery is complicated by contamination, heterogeneity, and degradation. While mechanical recycling of ABS is widely practiced, the impact of specific processing steps on the chemical and physical properties of the recyclate remains insufficiently explored. This study investigates the effect of shredding and extrusion, as well as the integration of virgin polybutadiene rubber (PBR), on the morphology, chemical structure, and thermal stability of ABS-rich WEEE recyclates. A multi-analytical approach, combining Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), inductively coupled plasma optical emission spectroscopy (ICP-OES) and thermal analysis − was employed to fully characterize the materials. Our findings show that extrusion improves sample homogeneity and removes some contaminants (e.g., Ba, Cl), leading to a significant increase in thermal stability (T10% +30 °C). The addition of virgin PBR contributes to enhanced internal cohesion and a fibrous morphology. This work provides a robust methodology for distinguishing processing-related changes from compositional variability in real-world recycled plastics. The approach can support the development of advanced processing strategies for polymer waste streams.
机械回收和添加原生PBR对WEEE回收ABS性能的影响:多技术表征
随着电子电气设备的使用越来越多,废弃电子电气设备的数量持续增加,对环境和回收构成重大挑战。丙烯腈-丁二烯-苯乙烯(ABS)是WEEE中最常见的热塑性塑料之一,其回收因污染、非均质性和降解而复杂。虽然ABS的机械回收被广泛应用,但具体的加工步骤对回收物的化学和物理性质的影响仍未得到充分的探讨。本研究考察了粉碎和挤压以及原生聚丁二烯橡胶(PBR)的整合对富含abs的报废电子电气设备回收物的形态、化学结构和热稳定性的影响。采用傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、能量色散x射线分析(EDX)、电感耦合等离子体光学发射光谱(ICP-OES)和热分析等多种分析方法对材料进行了全面表征。我们的研究结果表明,挤压改善了样品的均匀性,去除了一些污染物(例如Ba, Cl),导致热稳定性显著提高(T10% +30°C)。添加原生PBR有助于增强内部凝聚力和纤维形态。这项工作提供了一个强大的方法来区分加工相关的变化从成分可变性在现实世界的再生塑料。该方法可以支持聚合物废物流的先进处理策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信