Jie Cui , Caifeng Li , Gongze Cao , Yuxia Wu , Shouying Xu , Youming Zhang , Xiaoying Bian , Qiang Tu , Wentao Zheng
{"title":"Screening of molecular elements and improvement of heat resistance in a thermophilic bacterium","authors":"Jie Cui , Caifeng Li , Gongze Cao , Yuxia Wu , Shouying Xu , Youming Zhang , Xiaoying Bian , Qiang Tu , Wentao Zheng","doi":"10.1016/j.engmic.2025.100225","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering microorganisms to withstand extreme temperatures (>80 °C) remains a critical challenge in industrial biotechnology owing to limited genetic tools and poor mechanistic understanding of microbial thermoadaptation. We aimed to develop a novel <em>Geobacillus stearothermophilus</em> strain with remarkable thermal resilience through an integrated approach combining adaptive laboratory evolution and rational genetic engineering. Progressive thermal adaptation (70–80 °C) followed by genome reduction generated a mutant (SL-1–80) with enhanced stability at 80 °C. Subsequent combinatorial overexpression of eight heat-associated genes (<em>murD, cysM, grpE, groES, hsp33, hslO, hrcA, clpE</em>) synergistically extended its survival to 85 °C. Genomic and transcriptomic analyses revealed a triple mechanism: (1) strategic deletion of transposable elements (IS5377/IS4/IS110) reduced genomic instability, (2) co-activation of chaperone systems (GroES-GrpE) and redox homeostasis enzymes (HslO<img>Hsp33) enhanced protein folding and oxidative stress resistance, and (3) metabolic plasticity (BglG and HTH-domain transcriptional repressor), motility optimization (FliY), and transcriptional reprogramming (Sigma-D, DUF47-family chaperone and HTH-domain transcriptional repressor) facilitated nutrient acquisition and motility-based environmental navigation under stress. Furthermore, we established the first high-efficiency electroporation protocol (10<sup>4</sup> transformants/µg DNA) for this genus, enabling ATP-enhanced heterologous protein expression under heat stress. This study provided a robust platform organism for high-temperature bioprocessing and a mechanistic blueprint for engineering microbial thermotolerance, addressing key limitations in applications such as microbial-enhanced oil recovery and industrial enzyme production.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 3","pages":"Article 100225"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370325000396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering microorganisms to withstand extreme temperatures (>80 °C) remains a critical challenge in industrial biotechnology owing to limited genetic tools and poor mechanistic understanding of microbial thermoadaptation. We aimed to develop a novel Geobacillus stearothermophilus strain with remarkable thermal resilience through an integrated approach combining adaptive laboratory evolution and rational genetic engineering. Progressive thermal adaptation (70–80 °C) followed by genome reduction generated a mutant (SL-1–80) with enhanced stability at 80 °C. Subsequent combinatorial overexpression of eight heat-associated genes (murD, cysM, grpE, groES, hsp33, hslO, hrcA, clpE) synergistically extended its survival to 85 °C. Genomic and transcriptomic analyses revealed a triple mechanism: (1) strategic deletion of transposable elements (IS5377/IS4/IS110) reduced genomic instability, (2) co-activation of chaperone systems (GroES-GrpE) and redox homeostasis enzymes (HslOHsp33) enhanced protein folding and oxidative stress resistance, and (3) metabolic plasticity (BglG and HTH-domain transcriptional repressor), motility optimization (FliY), and transcriptional reprogramming (Sigma-D, DUF47-family chaperone and HTH-domain transcriptional repressor) facilitated nutrient acquisition and motility-based environmental navigation under stress. Furthermore, we established the first high-efficiency electroporation protocol (104 transformants/µg DNA) for this genus, enabling ATP-enhanced heterologous protein expression under heat stress. This study provided a robust platform organism for high-temperature bioprocessing and a mechanistic blueprint for engineering microbial thermotolerance, addressing key limitations in applications such as microbial-enhanced oil recovery and industrial enzyme production.