Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat source

IF 4.6 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Aissa Abderrahmane , Houssem Laidoudi , Abdeldjalil Belazreg , Obai Younis , Hamoud A. Al-Nehari , Riadh Marzouki
{"title":"Parametric study of MHD mixed convection heat transfer in a trapezoidal cavity with NEPCM suspension and rotating star-shaped heat source","authors":"Aissa Abderrahmane ,&nbsp;Houssem Laidoudi ,&nbsp;Abdeldjalil Belazreg ,&nbsp;Obai Younis ,&nbsp;Hamoud A. Al-Nehari ,&nbsp;Riadh Marzouki","doi":"10.1016/j.rinp.2025.108397","DOIUrl":null,"url":null,"abstract":"<div><div>A comprehensive numerical investigation of two-dimensional, steady, laminar magneto–hydrodynamic (MHD) mixed convection in a trapezoidal cavity filled with a nano-encapsulated phase–change material (NEPCM) suspension is presented. A star‑shaped heat source located at the cavity centre rotates with a constant angular velocity, while a uniform transverse magnetic field acts on the flow. The physical model couples the energy equation with a temperature–dependent effective specific heat formulation to represent the phase transition of NEPCM particles. The dimensionless governing equations are solved using a Galerkin weighted residual finite‑element method. Detailed parametric studies are carried out for Reynolds number Re = 10–1000, Darcy number Da = 10<sup>−6</sup>–10<sup>−2</sup>, Hartmann number Ha = 0–100 and NEPCM volume fraction φ = 0–0.08. Grid independence and code verification against benchmark solutions are demonstrated. Results reveal that increasing Re and Da enhances the average Nusselt number by up to 47 % and 23 %, respectively, whereas an 8 % NEPCM loading yields a modest ≈2 % enhancement due to increased slurry viscosity. Lorentz forces progressively damp convective rolls, reducing heat transfer at Ha &gt; 40. The unique combination of a rotating internal heater, complex cavity geometry, and phase‑change suspension provides new insights for the design of compact thermal energy‑storage and electronics‑cooling devices.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"76 ","pages":"Article 108397"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725002918","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive numerical investigation of two-dimensional, steady, laminar magneto–hydrodynamic (MHD) mixed convection in a trapezoidal cavity filled with a nano-encapsulated phase–change material (NEPCM) suspension is presented. A star‑shaped heat source located at the cavity centre rotates with a constant angular velocity, while a uniform transverse magnetic field acts on the flow. The physical model couples the energy equation with a temperature–dependent effective specific heat formulation to represent the phase transition of NEPCM particles. The dimensionless governing equations are solved using a Galerkin weighted residual finite‑element method. Detailed parametric studies are carried out for Reynolds number Re = 10–1000, Darcy number Da = 10−6–10−2, Hartmann number Ha = 0–100 and NEPCM volume fraction φ = 0–0.08. Grid independence and code verification against benchmark solutions are demonstrated. Results reveal that increasing Re and Da enhances the average Nusselt number by up to 47 % and 23 %, respectively, whereas an 8 % NEPCM loading yields a modest ≈2 % enhancement due to increased slurry viscosity. Lorentz forces progressively damp convective rolls, reducing heat transfer at Ha > 40. The unique combination of a rotating internal heater, complex cavity geometry, and phase‑change suspension provides new insights for the design of compact thermal energy‑storage and electronics‑cooling devices.
基于NEPCM悬浮和旋转星形热源的梯形腔内MHD混合对流换热参数化研究
本文对纳米封装相变材料(NEPCM)悬浮液填充的梯形腔内二维稳态层流磁流体混合对流进行了全面的数值研究。位于腔中心的星形热源以恒定的角速度旋转,同时均匀的横向磁场作用于流动。该物理模型将能量方程与温度相关的有效比热公式耦合在一起,以表示NEPCM粒子的相变。采用伽辽金加权余量有限元法求解无量纲控制方程。对雷诺数Re = 10 - 1000、达西数Da = 10−6-10−2、哈特曼数Ha = 0-100、NEPCM体积分数φ = 0-0.08进行了详细的参数化研究。演示了网格独立性和针对基准解决方案的代码验证。结果表明,Re和Da的增加分别使平均努塞尔数提高了47%和23%,而8%的NEPCM载荷由于浆体粘度的增加而使平均努塞尔数提高了约2%。洛伦兹力逐渐使对流轧辊受潮,减少了Ha >; 40处的传热。旋转内部加热器的独特组合,复杂的腔体几何形状和相变悬架为紧凑的热能储存和电子冷却设备的设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信