Plant-derived exosome-like nanoparticles as promising biotherapeutic tools: recent advances and challenges

Q1 Engineering
Di Liu , Jingxian Gao , Xueling Wu , Lu Han
{"title":"Plant-derived exosome-like nanoparticles as promising biotherapeutic tools: recent advances and challenges","authors":"Di Liu ,&nbsp;Jingxian Gao ,&nbsp;Xueling Wu ,&nbsp;Lu Han","doi":"10.1016/j.smaim.2025.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Exosomes, naturally occurring extracellular vesicles with diameters of 30–150 ​nm, have been extensively characterized in mammalian systems. In contrast, plant-derived exosome-like nanoparticles (PELNs) are emerging as versatile therapeutic carriers, offering distinct advantages including intrinsically low immunogenicity, inherent biocompatibility, enhanced biological barrier penetrability, and inherent cell-targeting capabilities. Notably, recent studies reveal that PELNs mediate unprecedented cross-kingdom communication by delivering plant-derived bioactive components to human cells, where they orchestrate immunomodulation, redox homeostasis, and tissue regeneration. This review systematically summarizes cutting-edge advances in PELNs research, emphasizing five critical dimensions: (1) context-dependent biogenesis pathways across plant species, (2) standardized isolation protocols combining ultracentrifugation and density gradient separation, (3) compositional profiles (proteins/lipids/nucleic acids/metabolites), (4) cellular internalization mechanisms, and (5) engineered applications as precision drug delivery platforms. We particularly highlight innovations in PELNs functionalization strategies - including chemical modification, genetic engineering, and biomimetic membrane hybridization - that enhance payload capacity and site-specific delivery. While discussing current limitations such as scalable production bottlenecks and pharmacokinetic characterization gaps, we summarize emerging strategies that aim to bridge botanical nanobiology and clinical practice. By delineating structure-function correlations and quality control standards, this critical review provides insights that may accelerate the development of PELN-based next-generation nanomedicines, ultimately fostering their transition from laboratory breakthroughs to FDA-approved therapeutic solutions.</div></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"6 2","pages":"Pages 285-304"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183425000213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Exosomes, naturally occurring extracellular vesicles with diameters of 30–150 ​nm, have been extensively characterized in mammalian systems. In contrast, plant-derived exosome-like nanoparticles (PELNs) are emerging as versatile therapeutic carriers, offering distinct advantages including intrinsically low immunogenicity, inherent biocompatibility, enhanced biological barrier penetrability, and inherent cell-targeting capabilities. Notably, recent studies reveal that PELNs mediate unprecedented cross-kingdom communication by delivering plant-derived bioactive components to human cells, where they orchestrate immunomodulation, redox homeostasis, and tissue regeneration. This review systematically summarizes cutting-edge advances in PELNs research, emphasizing five critical dimensions: (1) context-dependent biogenesis pathways across plant species, (2) standardized isolation protocols combining ultracentrifugation and density gradient separation, (3) compositional profiles (proteins/lipids/nucleic acids/metabolites), (4) cellular internalization mechanisms, and (5) engineered applications as precision drug delivery platforms. We particularly highlight innovations in PELNs functionalization strategies - including chemical modification, genetic engineering, and biomimetic membrane hybridization - that enhance payload capacity and site-specific delivery. While discussing current limitations such as scalable production bottlenecks and pharmacokinetic characterization gaps, we summarize emerging strategies that aim to bridge botanical nanobiology and clinical practice. By delineating structure-function correlations and quality control standards, this critical review provides insights that may accelerate the development of PELN-based next-generation nanomedicines, ultimately fostering their transition from laboratory breakthroughs to FDA-approved therapeutic solutions.

Abstract Image

植物源性外泌体样纳米颗粒作为有前途的生物治疗工具:最新进展和挑战
外泌体是天然存在的直径为30 - 150nm的细胞外囊泡,在哺乳动物系统中被广泛表征。相比之下,植物衍生的外泌体样纳米颗粒(peln)正在成为多功能的治疗载体,具有明显的优势,包括固有的低免疫原性、固有的生物相容性、增强的生物屏障穿透性和固有的细胞靶向能力。值得注意的是,最近的研究表明,peln通过向人类细胞传递植物源性生物活性成分,介导前所未有的跨界交流,在那里它们协调免疫调节、氧化还原稳态和组织再生。本文系统总结了peln研究的前沿进展,强调了五个关键维度:(1)植物物种间环境依赖的生物发生途径,(2)结合超离心和密度梯度分离的标准化分离方案,(3)组成谱(蛋白质/脂质/核酸/代谢物),(4)细胞内化机制,以及(5)作为精确药物递送平台的工程应用。我们特别强调了peln功能化策略的创新-包括化学修饰,基因工程和仿生膜杂交-提高了有效载荷能力和位点特异性递送。在讨论诸如可扩展生产瓶颈和药代动力学表征差距等当前限制的同时,我们总结了旨在弥合植物纳米生物学和临床实践的新兴策略。通过描述结构-功能相关性和质量控制标准,这篇重要的综述提供了可能加速基于peln的下一代纳米药物开发的见解,最终促进它们从实验室突破转变为fda批准的治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信