Khadijeh Askaripour , Adrian Bekasiewicz , Slawomir Koziel
{"title":"Unsupervised surrogate-assisted synthesis of free-form planar antenna topologies for IoT applications","authors":"Khadijeh Askaripour , Adrian Bekasiewicz , Slawomir Koziel","doi":"10.1016/j.aeue.2025.155997","DOIUrl":null,"url":null,"abstract":"<div><div>Design of antenna structures for Internet of Things (IoT) applications is a challenging problem. Contemporary radiators are often subject to a number of electric and/or radiation-related requirements, but also constraints imposed by specifics of IoT systems and/or intended operational environments. Conventional approaches to antenna design typically involve manual development of topology intertwined with its tuning. Although proved useful, the approach is prone to errors and engineering bias. Alternatively, geometries can be generated and optimized without supervision of the designer. The process can be controlled by suitable algorithms to determine and then adjust the antenna geometry according to the specifications. Unfortunately, automatic design of IoT radiators is associated with challenges such as determination of desirable geometries or high optimization cost. In this work, a variable-fidelity framework for performance-oriented development of free-form antennas represented using the generic simulation models is proposed. The method employs a surrogate-assisted classifier capable of identifying a suitable radiator topology from a set of automatically generated (and stored for potential re-use) candidate designs. The obtained geometry is then subject to a bi-stage tuning performed using a gradient-based optimization engine. The presented framework is demonstrated based on six numerical experiments concerning unsupervised development of bandwidth-enhanced patch antennas dedicated to work within 5 GHz to 6 GHz and 6 GHz to 7 GHz bands, respectively. Extensive benchmarks of the method, as well as the generated topologies are also performed.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"201 ","pages":"Article 155997"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125003383","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Design of antenna structures for Internet of Things (IoT) applications is a challenging problem. Contemporary radiators are often subject to a number of electric and/or radiation-related requirements, but also constraints imposed by specifics of IoT systems and/or intended operational environments. Conventional approaches to antenna design typically involve manual development of topology intertwined with its tuning. Although proved useful, the approach is prone to errors and engineering bias. Alternatively, geometries can be generated and optimized without supervision of the designer. The process can be controlled by suitable algorithms to determine and then adjust the antenna geometry according to the specifications. Unfortunately, automatic design of IoT radiators is associated with challenges such as determination of desirable geometries or high optimization cost. In this work, a variable-fidelity framework for performance-oriented development of free-form antennas represented using the generic simulation models is proposed. The method employs a surrogate-assisted classifier capable of identifying a suitable radiator topology from a set of automatically generated (and stored for potential re-use) candidate designs. The obtained geometry is then subject to a bi-stage tuning performed using a gradient-based optimization engine. The presented framework is demonstrated based on six numerical experiments concerning unsupervised development of bandwidth-enhanced patch antennas dedicated to work within 5 GHz to 6 GHz and 6 GHz to 7 GHz bands, respectively. Extensive benchmarks of the method, as well as the generated topologies are also performed.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.