Wenna Wu , Jialin Jia , Junkang Yang , Tao Zhang , Jingcheng Hao
{"title":"Colloidal soft matters-based flexible energy storage devices: Design and application","authors":"Wenna Wu , Jialin Jia , Junkang Yang , Tao Zhang , Jingcheng Hao","doi":"10.1016/j.cis.2025.103629","DOIUrl":null,"url":null,"abstract":"<div><div>With the continuous growth of energy demand and the pursuit of sustainable energy systems, the development of efficient, reliable and environmentally friendly energy storage devices has become a research hotspot. Colloidal soft matter, with its controllable self-assembly behavior endowing unique porous nanochannel structure, high specific surface area and tunable rheological properties, provides new approaches for the innovative design of energy storage devices. Here, we systematically review the design strategies of colloidal soft matter-based energy storage devices, covering the optimization of key components such as electrolytes and electrode materials. It mainly focuses on the design and development of various liquid crystals electrolytes (1D columnar, 2D smectic, and 3D bicontinuous cubic liquid crystal), emulsions-based electrolytes (microemulsions-, Pickering emulsions-, Bijel-, high internal phase emulsions-, and novel emulsions-based electrolytes), gel-based electrolytes (hydrogel, organogel, ionogel, and eutectogel electrolytes), as well as emulsion-, hydrogel-, and aerogel-based electrode materials. By rationally utilizing the characteristics of colloidal soft matter, the energy density, power density and cycle stability of energy storage devices can be effectively enhanced. In terms of application, the potential applications of multifunctional supercapacitors and batteries are discussed in detail. It also anticipates future research directions, such as the optimization of synergistic effects of electrolytes and electrodes, the development of novel colloidal soft substances, and the advancement of multifunctional integration of energy storage devices. This review provides a systematic reference for further research on colloidal soft substances in the field of green energy storage.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"345 ","pages":"Article 103629"},"PeriodicalIF":19.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868625002404","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the continuous growth of energy demand and the pursuit of sustainable energy systems, the development of efficient, reliable and environmentally friendly energy storage devices has become a research hotspot. Colloidal soft matter, with its controllable self-assembly behavior endowing unique porous nanochannel structure, high specific surface area and tunable rheological properties, provides new approaches for the innovative design of energy storage devices. Here, we systematically review the design strategies of colloidal soft matter-based energy storage devices, covering the optimization of key components such as electrolytes and electrode materials. It mainly focuses on the design and development of various liquid crystals electrolytes (1D columnar, 2D smectic, and 3D bicontinuous cubic liquid crystal), emulsions-based electrolytes (microemulsions-, Pickering emulsions-, Bijel-, high internal phase emulsions-, and novel emulsions-based electrolytes), gel-based electrolytes (hydrogel, organogel, ionogel, and eutectogel electrolytes), as well as emulsion-, hydrogel-, and aerogel-based electrode materials. By rationally utilizing the characteristics of colloidal soft matter, the energy density, power density and cycle stability of energy storage devices can be effectively enhanced. In terms of application, the potential applications of multifunctional supercapacitors and batteries are discussed in detail. It also anticipates future research directions, such as the optimization of synergistic effects of electrolytes and electrodes, the development of novel colloidal soft substances, and the advancement of multifunctional integration of energy storage devices. This review provides a systematic reference for further research on colloidal soft substances in the field of green energy storage.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.