{"title":"From lab to field: Real-world evaluation of an AI-driven Smart Video Solution to enhance community safety","authors":"Shanle Yao , Babak Rahimi Ardabili , Armin Danesh Pazho , Ghazal Alinezhad Noghre , Christopher Neff , Lauren Bourque , Hamed Tabkhi","doi":"10.1016/j.iot.2025.101716","DOIUrl":null,"url":null,"abstract":"<div><div>This article adopts and evaluates an AI-enabled Smart Video Solution (SVS) designed to enhance safety in the real world. The system integrates with existing infrastructure camera networks, leveraging recent advancements in AI for easy adoption. Prioritizing privacy and ethical standards, pose-based data is used for downstream AI tasks such as anomaly detection. A Cloud-based infrastructure and a mobile app are deployed, enabling real-time alerts within communities. The SVS employs innovative data representation and visualization techniques, such as the Occupancy Indicator, Statistical Anomaly Detection, Bird’s Eye View, and Heatmaps, to understand pedestrian behaviors and enhance public safety. Evaluation of the SVS demonstrates its capacity to convert complex computer vision outputs into actionable insights for stakeholders, community partners, law enforcement, urban planners, and social scientists. This article presents a comprehensive real-world deployment and evaluation of the SVS, implemented in a community college environment with 16 cameras. The system integrates AI-driven visual processing, supported by statistical analysis, database management, cloud communication, and user notifications. Additionally, the article evaluates the end-to-end latency from the moment an AI algorithm detects anomalous behavior in real-time at the camera level to the time stakeholders receive a notification. The results demonstrate the system’s robustness, effectively managing 16 CCTV cameras with a consistent throughput of 16.5 frames per second (FPS) over a 21-h period and an average end-to-end latency of 26.76 s between anomaly detection and alert issuance.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"33 ","pages":"Article 101716"},"PeriodicalIF":7.6000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002306","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This article adopts and evaluates an AI-enabled Smart Video Solution (SVS) designed to enhance safety in the real world. The system integrates with existing infrastructure camera networks, leveraging recent advancements in AI for easy adoption. Prioritizing privacy and ethical standards, pose-based data is used for downstream AI tasks such as anomaly detection. A Cloud-based infrastructure and a mobile app are deployed, enabling real-time alerts within communities. The SVS employs innovative data representation and visualization techniques, such as the Occupancy Indicator, Statistical Anomaly Detection, Bird’s Eye View, and Heatmaps, to understand pedestrian behaviors and enhance public safety. Evaluation of the SVS demonstrates its capacity to convert complex computer vision outputs into actionable insights for stakeholders, community partners, law enforcement, urban planners, and social scientists. This article presents a comprehensive real-world deployment and evaluation of the SVS, implemented in a community college environment with 16 cameras. The system integrates AI-driven visual processing, supported by statistical analysis, database management, cloud communication, and user notifications. Additionally, the article evaluates the end-to-end latency from the moment an AI algorithm detects anomalous behavior in real-time at the camera level to the time stakeholders receive a notification. The results demonstrate the system’s robustness, effectively managing 16 CCTV cameras with a consistent throughput of 16.5 frames per second (FPS) over a 21-h period and an average end-to-end latency of 26.76 s between anomaly detection and alert issuance.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.