Hatai Jongprasitkul , Sanna Turunen , David A. Fulton , Minna Kellomäki , Vijay Singh Parihar
{"title":"Dual-crosslinkable gallol bioinks via pH-controlled oxidation and photocrosslinking with enhanced shear thinning and viscoelastic behavior","authors":"Hatai Jongprasitkul , Sanna Turunen , David A. Fulton , Minna Kellomäki , Vijay Singh Parihar","doi":"10.1016/j.bprint.2025.e00432","DOIUrl":null,"url":null,"abstract":"<div><div>Our research work proposes a dual crosslinking approach to address the limitations of the gallol-mediated auto-oxidation approach in bioprinting, where rapid oxidative crosslinking can cause premature gelation, leading to clogging or printing failure. We enabled a gallol hydrogel ink to be printable via extrusion-based 3D bioprinting by utilizing its temporal shear-thinning properties. By raising the pH level, interactions between gallol-modified hyaluronic acid methacrylate (HAMA-GA) can be triggered to form a weak hydrogel. This feature provides injectability and extrudability for the hydrogels. Subsequent photocrosslinking results in indefinite oxidative crosslinking. The oxidative coupling in HAMA-GA was partially inhibited by UV light during the photocrosslinking step. As a result, the printed hydrogel formed a dual-crosslinked network containing both oxidative and photo-induced bonds, which contributed to enhanced structural stability over time. Our proposed approach addresses the challenges of gallol-mediated oxidation, including overgelation that hinders extrusion in 3D bioprinting, offering a promising solution for improved printability and shape fidelity. HAMA-GA ink was bioprintable at pH 5.5 using an extrusion-based 3D printer, showing cytocompatibility (∼95 % viability). This strategy is valuable for designing hydrogel inks with tunable properties for 3D bioprinting while maintaining tissue adhesive properties of gallol moieties.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"50 ","pages":"Article e00432"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240588662500048X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Our research work proposes a dual crosslinking approach to address the limitations of the gallol-mediated auto-oxidation approach in bioprinting, where rapid oxidative crosslinking can cause premature gelation, leading to clogging or printing failure. We enabled a gallol hydrogel ink to be printable via extrusion-based 3D bioprinting by utilizing its temporal shear-thinning properties. By raising the pH level, interactions between gallol-modified hyaluronic acid methacrylate (HAMA-GA) can be triggered to form a weak hydrogel. This feature provides injectability and extrudability for the hydrogels. Subsequent photocrosslinking results in indefinite oxidative crosslinking. The oxidative coupling in HAMA-GA was partially inhibited by UV light during the photocrosslinking step. As a result, the printed hydrogel formed a dual-crosslinked network containing both oxidative and photo-induced bonds, which contributed to enhanced structural stability over time. Our proposed approach addresses the challenges of gallol-mediated oxidation, including overgelation that hinders extrusion in 3D bioprinting, offering a promising solution for improved printability and shape fidelity. HAMA-GA ink was bioprintable at pH 5.5 using an extrusion-based 3D printer, showing cytocompatibility (∼95 % viability). This strategy is valuable for designing hydrogel inks with tunable properties for 3D bioprinting while maintaining tissue adhesive properties of gallol moieties.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.