Maria-Bianca Irimes , Alexandra Pusta , Daniel Coker , Paul Cristian Martian , Maria Suciu , Stanca-Lucia Pandrea , Mihaela Tertis , Cecilia Cristea , Radu Oprean
{"title":"Dual-target electrochemical aptasensor for the simultaneous detection of interleukin-6 and tumor necrosis factor-α in biological fluids","authors":"Maria-Bianca Irimes , Alexandra Pusta , Daniel Coker , Paul Cristian Martian , Maria Suciu , Stanca-Lucia Pandrea , Mihaela Tertis , Cecilia Cristea , Radu Oprean","doi":"10.1016/j.sbsr.2025.100866","DOIUrl":null,"url":null,"abstract":"<div><div>Cytokines are key signaling biomolecules involved in cell growth, immune regulation, inflammation, and cancer-related processes, being valuable biomarkers for diagnosing medical conditions, assessing prognosis, and monitoring treatment efficacy. This study aimed to develop a customized platform enabling the simultaneous electrochemical detection of Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNF-α) in biological fluids.</div><div>The platform was fabricated using in-lab printed electrochemical cells. The working electrode was functionalized with Au and Pt nanoparticles to enhance detection sensitivity. The specificity towards the targets was achieved by immobilizing two distinct aptamers, each labeled with a different redox probe, allowing parallel signal readouts and implicitly the simultaneous detection of the two biomarkers. The aptasensor demonstrated simultaneous detection of IL-6 and TNF-α within a linear range of 5–5000 pg/mL, achieving a limit of detection of 1.6 pg/mL. The dual-target aptasensor was validated using real biological samples, including raw saliva and sweat, collected from patients and healthy individuals. Results obtained from the aptasensor were cross-verified with ELISA and validated through statistical analysis.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"49 ","pages":"Article 100866"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425001321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cytokines are key signaling biomolecules involved in cell growth, immune regulation, inflammation, and cancer-related processes, being valuable biomarkers for diagnosing medical conditions, assessing prognosis, and monitoring treatment efficacy. This study aimed to develop a customized platform enabling the simultaneous electrochemical detection of Interleukin-6 (IL-6) and Tumor Necrosis Factor-α (TNF-α) in biological fluids.
The platform was fabricated using in-lab printed electrochemical cells. The working electrode was functionalized with Au and Pt nanoparticles to enhance detection sensitivity. The specificity towards the targets was achieved by immobilizing two distinct aptamers, each labeled with a different redox probe, allowing parallel signal readouts and implicitly the simultaneous detection of the two biomarkers. The aptasensor demonstrated simultaneous detection of IL-6 and TNF-α within a linear range of 5–5000 pg/mL, achieving a limit of detection of 1.6 pg/mL. The dual-target aptasensor was validated using real biological samples, including raw saliva and sweat, collected from patients and healthy individuals. Results obtained from the aptasensor were cross-verified with ELISA and validated through statistical analysis.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.