Cartier–Gabriel–Kostant theorem for relative Rota–Baxter operators

IF 0.8 2区 数学 Q2 MATHEMATICS
Haixing Zhu , Yujie Di
{"title":"Cartier–Gabriel–Kostant theorem for relative Rota–Baxter operators","authors":"Haixing Zhu ,&nbsp;Yujie Di","doi":"10.1016/j.jalgebra.2025.08.008","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>H</em> and <em>K</em> be two cocommutative Hopf algebras over an algebraically closed field <span><math><mi>F</mi></math></span> of characteristic 0. In this paper, we first prove any relative Rota–Baxter operator <span><math><mi>T</mi><mo>:</mo><mi>K</mi><mo>⟶</mo><mi>H</mi></math></span> to be isomorphic to a relative Rota–Baxter operator <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>:</mo><mi>U</mi><mo>(</mo><mi>P</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>)</mo><mo>♯</mo><mi>F</mi><mo>[</mo><mi>G</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>]</mo><mo>⟶</mo><mi>U</mi><mo>(</mo><mi>P</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>)</mo><mo>♯</mo><mi>F</mi><mo>[</mo><mi>G</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>]</mo></math></span>, which is determined by a relative Rota–Baxter operator <span><math><mi>R</mi><mo>:</mo><mi>P</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>⟶</mo><mi>P</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> on the Lie algebra <span><math><mi>P</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, and a relative Rota–Baxter operator <span><math><mi>B</mi><mo>:</mo><mi>G</mi><mo>(</mo><mi>K</mi><mo>)</mo><mo>⟶</mo><mi>G</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> on the group <span><math><mi>G</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. Next we prove that Rota–Baxter operators on <em>H</em> are in one to one correspondence with Rota–Baxter pairs on the Lie algebra <span><math><mi>P</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> and the group <span><math><mi>G</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>. These results should be viewed as the Rota–Baxter operator version of classical Cartier–Gabriel–Kostant structure theorem. Finally, we prove that this well-known structure theorem also holds for post-Hopf algebras and Hopf braces.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 775-800"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004752","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H and K be two cocommutative Hopf algebras over an algebraically closed field F of characteristic 0. In this paper, we first prove any relative Rota–Baxter operator T:KH to be isomorphic to a relative Rota–Baxter operator OT:U(P(K))F[G(K)]U(P(H))F[G(H)], which is determined by a relative Rota–Baxter operator R:P(K)P(H) on the Lie algebra P(H), and a relative Rota–Baxter operator B:G(K)G(H) on the group G(H). Next we prove that Rota–Baxter operators on H are in one to one correspondence with Rota–Baxter pairs on the Lie algebra P(H) and the group G(H). These results should be viewed as the Rota–Baxter operator version of classical Cartier–Gabriel–Kostant structure theorem. Finally, we prove that this well-known structure theorem also holds for post-Hopf algebras and Hopf braces.
相对Rota-Baxter算子的Cartier-Gabriel-Kostant定理
设H和K是特征为0的代数闭域F上的两个协交换Hopf代数。本文首先证明了任意相对Rota-Baxter算子T:K H与一个相对Rota-Baxter算子OT:U(P(K))♯F[G(K)] U(P(H)) F[G(H)]同构,该算子由李代数P(H)上的一个相对Rota-Baxter算子R:P(K) P(H),以及G(H)群上的一个相对Rota-Baxter算子B:G(K) G(H)决定。然后证明了H上的Rota-Baxter算子与李代数P(H)和群G(H)上的Rota-Baxter对是一一对应的。这些结果可以看作是经典Cartier-Gabriel-Kostant结构定理的Rota-Baxter算子版本。最后,我们证明了这个著名的结构定理也适用于后Hopf代数和Hopf括号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信