Relative modality of elements in generalized Takiff Lie algebras

IF 0.8 2区 数学 Q2 MATHEMATICS
Hugo Mathevet
{"title":"Relative modality of elements in generalized Takiff Lie algebras","authors":"Hugo Mathevet","doi":"10.1016/j.jalgebra.2025.07.036","DOIUrl":null,"url":null,"abstract":"<div><div>Given a natural number <em>m</em> and a finite dimensional complex Lie algebra <span><math><mi>g</mi></math></span>, the <span><math><msup><mrow><mi>m</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></math></span> generalized Takiff Lie algebra of <span><math><mi>g</mi></math></span> is the Lie algebra <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>:</mo><mo>=</mo><mi>g</mi><mo>⊗</mo><mi>C</mi><mo>[</mo><mi>T</mi><mo>]</mo><mo>/</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. For <span><math><mi>n</mi><mo>≥</mo><mi>m</mi></math></span>, we define the <span><math><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>-modality of an adjoint orbit <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> in <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> to be the minimum codimension of an adjoint orbit in the pullback of <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> in <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div><div>In this paper, we study these invariants in generalized Takiff Lie algebras associated to a quadratic Lie algebra <span><math><mi>g</mi></math></span>. We show that these invariants satisfy some concavity and hereditary properties from which we deduce that <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>)</mo><mi>χ</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span> is a lower bound, where <span><math><mi>χ</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span> is the index of <span><math><mi>g</mi></math></span>. We prove that this lower bound is in fact an equality for a dense set of orbits, and that if <span><math><mi>g</mi></math></span> is reductive, it is always an equality when <span><math><mi>m</mi><mo>=</mo><mn>0</mn></math></span> (and also some special orbits). We conjecture that equality holds for all <em>m</em>, <em>n</em> when <span><math><mi>g</mi></math></span> is reductive.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 755-774"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004557","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a natural number m and a finite dimensional complex Lie algebra g, the mth generalized Takiff Lie algebra of g is the Lie algebra gm:=gC[T]/Tm+1. For nm, we define the (m,n)-modality of an adjoint orbit Ωm in gm to be the minimum codimension of an adjoint orbit in the pullback of Ωm in gn.
In this paper, we study these invariants in generalized Takiff Lie algebras associated to a quadratic Lie algebra g. We show that these invariants satisfy some concavity and hereditary properties from which we deduce that (nm)χ(g) is a lower bound, where χ(g) is the index of g. We prove that this lower bound is in fact an equality for a dense set of orbits, and that if g is reductive, it is always an equality when m=0 (and also some special orbits). We conjecture that equality holds for all m, n when g is reductive.
广义Takiff Lie代数中元素的相对模态
给定一个自然数m和一个有限维复李代数g, g的第m个广义Takiff李代数是李代数gm:=g⊗C[T]/Tm+1。当n≥m时,我们定义gm中伴随轨道Ωm的(m,n)-模态为gn中Ωm回拉时伴随轨道的最小余维。在本文中,我们研究这些不变量的广义Takiff单李代数相关二次李代数g。我们表明,这些不变量满足一些凹度和遗传特性,我们推断出(n−m)χ(g)是一个下界,在χ(g)的指数g。我们证明这个下界是事实上的平等密集的轨道,如果g是还原,这总是一个平等m = 0时(以及一些特殊的轨道)。我们推测当g是约化的时,等式对所有m, n都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信