{"title":"Relative modality of elements in generalized Takiff Lie algebras","authors":"Hugo Mathevet","doi":"10.1016/j.jalgebra.2025.07.036","DOIUrl":null,"url":null,"abstract":"<div><div>Given a natural number <em>m</em> and a finite dimensional complex Lie algebra <span><math><mi>g</mi></math></span>, the <span><math><msup><mrow><mi>m</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></math></span> generalized Takiff Lie algebra of <span><math><mi>g</mi></math></span> is the Lie algebra <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>:</mo><mo>=</mo><mi>g</mi><mo>⊗</mo><mi>C</mi><mo>[</mo><mi>T</mi><mo>]</mo><mo>/</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>. For <span><math><mi>n</mi><mo>≥</mo><mi>m</mi></math></span>, we define the <span><math><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span>-modality of an adjoint orbit <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> in <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> to be the minimum codimension of an adjoint orbit in the pullback of <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> in <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div><div>In this paper, we study these invariants in generalized Takiff Lie algebras associated to a quadratic Lie algebra <span><math><mi>g</mi></math></span>. We show that these invariants satisfy some concavity and hereditary properties from which we deduce that <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>)</mo><mi>χ</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span> is a lower bound, where <span><math><mi>χ</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span> is the index of <span><math><mi>g</mi></math></span>. We prove that this lower bound is in fact an equality for a dense set of orbits, and that if <span><math><mi>g</mi></math></span> is reductive, it is always an equality when <span><math><mi>m</mi><mo>=</mo><mn>0</mn></math></span> (and also some special orbits). We conjecture that equality holds for all <em>m</em>, <em>n</em> when <span><math><mi>g</mi></math></span> is reductive.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 755-774"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004557","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a natural number m and a finite dimensional complex Lie algebra , the generalized Takiff Lie algebra of is the Lie algebra . For , we define the -modality of an adjoint orbit in to be the minimum codimension of an adjoint orbit in the pullback of in .
In this paper, we study these invariants in generalized Takiff Lie algebras associated to a quadratic Lie algebra . We show that these invariants satisfy some concavity and hereditary properties from which we deduce that is a lower bound, where is the index of . We prove that this lower bound is in fact an equality for a dense set of orbits, and that if is reductive, it is always an equality when (and also some special orbits). We conjecture that equality holds for all m, n when is reductive.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.