{"title":"Pushforward of Siegel flag varieties in the Chow ring","authors":"Simon Cooper","doi":"10.1016/j.jalgebra.2025.07.050","DOIUrl":null,"url":null,"abstract":"<div><div>Given a reductive group <em>G</em> over an algebraically closed field and subsets <span><math><mi>I</mi><mo>,</mo><mi>J</mi><mo>⊂</mo><mi>Δ</mi></math></span> of the simple roots Δ determined by a choice of maximal torus and Borel subgroup, there is a closed embedding of flag varieties <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>↪</mo><mi>G</mi><mo>/</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span>. In this paper we compute the class of the sub flag variety <span><math><mo>[</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>]</mo><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>•</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>/</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>)</mo></math></span> in the Chow ring for the ‘Siegel’ case where <em>G</em> is a general symplectic group of semisimple rank <em>g</em> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub></math></span> is the parabolic stabilising a maximal isotropic subspace. This corresponds, under the isomorphism with the tautological ring of the moduli space of principally polarised abelian varieties <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>•</mo></mrow></msup><mo>(</mo><msubsup><mrow><mi>A</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>tor</mi></mrow></msubsup><mo>)</mo><mo>≅</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>•</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>/</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>)</mo></math></span>, to the generator of the classes in the tautological ring which are supported on the toroidal boundary. This provides basic evidence for a conjecture describing the tautological ring of a Hodge-type Shimura variety.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 523-535"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002186932500465X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a reductive group G over an algebraically closed field and subsets of the simple roots Δ determined by a choice of maximal torus and Borel subgroup, there is a closed embedding of flag varieties . In this paper we compute the class of the sub flag variety in the Chow ring for the ‘Siegel’ case where G is a general symplectic group of semisimple rank g and is the parabolic stabilising a maximal isotropic subspace. This corresponds, under the isomorphism with the tautological ring of the moduli space of principally polarised abelian varieties , to the generator of the classes in the tautological ring which are supported on the toroidal boundary. This provides basic evidence for a conjecture describing the tautological ring of a Hodge-type Shimura variety.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.