Decomposition of triangle-free planar graphs

IF 0.9 3区 数学 Q1 MATHEMATICS
Rongxing Xu , Xuding Zhu
{"title":"Decomposition of triangle-free planar graphs","authors":"Rongxing Xu ,&nbsp;Xuding Zhu","doi":"10.1016/j.ejc.2025.104227","DOIUrl":null,"url":null,"abstract":"<div><div>A decomposition of a graph <span><math><mi>G</mi></math></span> is a family of subgraphs of <span><math><mi>G</mi></math></span> whose edge sets form a partition of <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we prove that every triangle-free planar graph <span><math><mi>G</mi></math></span> can be decomposed into a 2-degenerate graph and a matching. Consequently, every triangle-free planar graph <span><math><mi>G</mi></math></span> has a matching <span><math><mi>M</mi></math></span> such that <span><math><mrow><mi>G</mi><mo>−</mo><mi>M</mi></mrow></math></span> is online 3-DP-colorable. This strengthens an earlier result in Škrekovski (1999) that every triangle-free planar graph is 1-defective 3-choosable.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104227"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001167","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A decomposition of a graph G is a family of subgraphs of G whose edge sets form a partition of E(G). In this paper, we prove that every triangle-free planar graph G can be decomposed into a 2-degenerate graph and a matching. Consequently, every triangle-free planar graph G has a matching M such that GM is online 3-DP-colorable. This strengthens an earlier result in Škrekovski (1999) that every triangle-free planar graph is 1-defective 3-choosable.
无三角形平面图的分解
图G的分解是G的一组子图,这些子图的边集构成E(G)的一个划分。本文证明了每一个无三角形平面图G都可以分解为一个2-简并图和一个匹配图。因此,每一个无三角形平面图G都有一个匹配的M,使得G−M是在线3- dp可着色的。这加强了Škrekovski(1999)中先前的一个结果,即每个无三角形平面图都是1-缺陷3-可选的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信